Generalized Tenney norms and Tp interval space: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>mbattaglia1 **Imported revision 356496102 - Original comment: ** |
Wikispaces>mbattaglia1 **Imported revision 356496110 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-06 04:02: | : This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-06 04:02:34 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>356496110</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif;">Basics</span>= | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif;">Basics</span>= | ||
<span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">It can be useful to define a notion of the "complexity" of an interval, so that small-integer ratios such as 3/2 are less complex and intervals such as 32805/32768 are more complex. This can be accomplished for any free abelian group of monzos or smonzos by embedding the group in a normed vector space, so that the norm of any interval is taken to be its complexity. Alternatively, if one prefers to think of the monzos as forming a <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℤ</span>-module, the vector space can be constructed by simply allowing the existence of monzos with real coordinates, hence defining the module over <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℝ</span> instead of <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℤ</span> and giving it the added structure of being a vector space. In either case, the resulting space is called [[Monzos and Interval Space|interval space]], with the monzos forming the lattice of vectors with integer coordinates.</span> | <span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> | ||
</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">It can be useful to define a notion of the "complexity" of an interval, so that small-integer ratios such as 3/2 are less complex and intervals such as 32805/32768 are more complex. This can be accomplished for any free abelian group of monzos or smonzos by embedding the group in a normed vector space, so that the norm of any interval is taken to be its complexity. Alternatively, if one prefers to think of the monzos as forming a <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℤ</span>-module, the vector space can be constructed by simply allowing the existence of monzos with real coordinates, hence defining the module over <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℝ</span> instead of <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℤ</span> and giving it the added structure of being a vector space. In either case, the resulting space is called [[Monzos and Interval Space|interval space]], with the monzos forming the lattice of vectors with integer coordinates.</span> | |||
<span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">The most important and natural norm which arises in this scenario is the Tenney norm, which we will explore below.</span> | <span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">The most important and natural norm which arises in this scenario is the Tenney norm, which we will explore below.</span> | ||
=<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif;">The Tenney Norm (T1 norm)</span>= | =<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif;">The Tenney Norm (T1 norm)</span>= | ||
Line 16: | Line 17: | ||
\left \| \vec{v} \right \|_{\textbf{T1}} = \left \| \mathbf{W} \cdot \mathbf{V} \cdot \vec{v} \right \|_1 | \left \| \vec{v} \right \|_{\textbf{T1}} = \left \| \mathbf{W} \cdot \mathbf{V} \cdot \vec{v} \right \|_1 | ||
where **V** is a [[xenharmonic/Subgroup Mapping Matrices (V-maps)|V-map]] in which the columns are monzos express</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">For interval spaces corresponding to a group of monzos where the basis is set to consist of only primes or prime powers, the Tenney norm of any interval v can be represented by the expression</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">\left \| \vec{v} \right \|_{\textbf{T1}} = \left \| \mathbf{W} \cdot \vec{v} \right \|_1</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">where **W** is a diagonal "weighting matrix" such that the nth entry in the diagonal is the log<span style="font-size: 10px; vertical-align: sub;">2</span> of the interval represented by the nth coordinate of the monzo. For Tenney norms on these spaces, the unit sphere will look like the ordinary L1 unit sphere, but be dilated a different amount along each axis.</span></pre></div> | where **V** is a [[xenharmonic/Subgroup Mapping Matrices (V-maps)|V-map]] in which the columns are monzos express</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> | ||
</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">For interval spaces corresponding to a group of monzos where the basis is set to consist of only primes or prime powers, the Tenney norm of any interval v can be represented by the expression</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> | |||
</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">\left \| \vec{v} \right \|_{\textbf{T1}} = \left \| \mathbf{W} \cdot \vec{v} \right \|_1</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> | |||
</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> | |||
</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">where **W** is a diagonal "weighting matrix" such that the nth entry in the diagonal is the log<span style="font-size: 10px; vertical-align: sub;">2</span> of the interval represented by the nth coordinate of the monzo. For Tenney norms on these spaces, the unit sphere will look like the ordinary L1 unit sphere, but be dilated a different amount along each axis.</span></pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Generalized Tenney Norms and Tp Interval Space</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Basics"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif;">Basics</span></h1> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Generalized Tenney Norms and Tp Interval Space</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Basics"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif;">Basics</span></h1> | ||
<span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">It can be useful to define a notion of the &quot;complexity&quot; of an interval, so that small-integer ratios such as 3/2 are less complex and intervals such as 32805/32768 are more complex. This can be accomplished for any free abelian group of monzos or smonzos by embedding the group in a normed vector space, so that the norm of any interval is taken to be its complexity. Alternatively, if one prefers to think of the monzos as forming a <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℤ</span>-module, the vector space can be constructed by simply allowing the existence of monzos with real coordinates, hence defining the module over <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℝ</span> instead of <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℤ</span> and giving it the added structure of being a vector space. In either case, the resulting space is called <a class="wiki_link" href="/Monzos%20and%20Interval%20Space">interval space</a>, with the monzos forming the lattice of vectors with integer coordinates.</span><br /> | <span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"><br /> | ||
</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">It can be useful to define a notion of the &quot;complexity&quot; of an interval, so that small-integer ratios such as 3/2 are less complex and intervals such as 32805/32768 are more complex. This can be accomplished for any free abelian group of monzos or smonzos by embedding the group in a normed vector space, so that the norm of any interval is taken to be its complexity. Alternatively, if one prefers to think of the monzos as forming a <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℤ</span>-module, the vector space can be constructed by simply allowing the existence of monzos with real coordinates, hence defining the module over <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℝ</span> instead of <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℤ</span> and giving it the added structure of being a vector space. In either case, the resulting space is called <a class="wiki_link" href="/Monzos%20and%20Interval%20Space">interval space</a>, with the monzos forming the lattice of vectors with integer coordinates.</span><br /> | |||
<span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">The most important and natural norm which arises in this scenario is the Tenney norm, which we will explore below.</span><br /> | <span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">The most important and natural norm which arises in this scenario is the Tenney norm, which we will explore below.</span><br /> | ||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="The Tenney Norm (T1 norm)"></a><!-- ws:end:WikiTextHeadingRule:2 --><span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif;">The Tenney Norm (T1 norm)</span></h1> | <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="The Tenney Norm (T1 norm)"></a><!-- ws:end:WikiTextHeadingRule:2 --><span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif;">The Tenney Norm (T1 norm)</span></h1> | ||
Line 28: | Line 34: | ||
\left \| \vec{v} \right \|_{\textbf{T1}} = \left \| \mathbf{W} \cdot \mathbf{V} \cdot \vec{v} \right \|_1<br /> | \left \| \vec{v} \right \|_{\textbf{T1}} = \left \| \mathbf{W} \cdot \mathbf{V} \cdot \vec{v} \right \|_1<br /> | ||
<br /> | <br /> | ||
where <strong>V</strong> is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Subgroup%20Mapping%20Matrices%20%28V-maps%29">V-map</a> in which the columns are monzos express</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">For interval spaces corresponding to a group of monzos where the basis is set to consist of only primes or prime powers, the Tenney norm of any interval v can be represented by the expression</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">\left \| \vec{v} \right \|_{\textbf{T1}} = \left \| \mathbf{W} \cdot \vec{v} \right \|_1</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">where <strong>W</strong> is a diagonal &quot;weighting matrix&quot; such that the nth entry in the diagonal is the log<span style="font-size: 10px; vertical-align: sub;">2</span> of the interval represented by the nth coordinate of the monzo. For Tenney norms on these spaces, the unit sphere will look like the ordinary L1 unit sphere, but be dilated a different amount along each axis.</span></body></html></pre></div> | where <strong>V</strong> is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Subgroup%20Mapping%20Matrices%20%28V-maps%29">V-map</a> in which the columns are monzos express</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"><br /> | ||
</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">For interval spaces corresponding to a group of monzos where the basis is set to consist of only primes or prime powers, the Tenney norm of any interval v can be represented by the expression</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"><br /> | |||
</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">\left \| \vec{v} \right \|_{\textbf{T1}} = \left \| \mathbf{W} \cdot \vec{v} \right \|_1</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"><br /> | |||
</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"><br /> | |||
</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">where <strong>W</strong> is a diagonal &quot;weighting matrix&quot; such that the nth entry in the diagonal is the log<span style="font-size: 10px; vertical-align: sub;">2</span> of the interval represented by the nth coordinate of the monzo. For Tenney norms on these spaces, the unit sphere will look like the ordinary L1 unit sphere, but be dilated a different amount along each axis.</span></body></html></pre></div> |
Revision as of 04:02, 6 August 2012
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author mbattaglia1 and made on 2012-08-06 04:02:34 UTC.
- The original revision id was 356496110.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif;">Basics</span>= <span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">It can be useful to define a notion of the "complexity" of an interval, so that small-integer ratios such as 3/2 are less complex and intervals such as 32805/32768 are more complex. This can be accomplished for any free abelian group of monzos or smonzos by embedding the group in a normed vector space, so that the norm of any interval is taken to be its complexity. Alternatively, if one prefers to think of the monzos as forming a <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℤ</span>-module, the vector space can be constructed by simply allowing the existence of monzos with real coordinates, hence defining the module over <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℝ</span> instead of <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℤ</span> and giving it the added structure of being a vector space. In either case, the resulting space is called [[Monzos and Interval Space|interval space]], with the monzos forming the lattice of vectors with integer coordinates.</span> <span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">The most important and natural norm which arises in this scenario is the Tenney norm, which we will explore below.</span> =<span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif;">The Tenney Norm (T1 norm)</span>= <span style="background-color: #ffffff; color: #222222; display: block;"><span style="font-family: arial,sans-serif;">The **Tenney norm**, also called **Tenney height**, is the norm such that for any monzo representing an interval a/b, the norm of the interval is log(a·b). For a full-limit monzo |a b c d ...>, this norm can be calculated as |log</span><span style="font-family: arial,sans-serif; font-size: 10px; vertical-align: sub;">2</span><span style="font-family: arial,sans-serif;">(2)·a| + |log</span><span style="font-family: arial,sans-serif; font-size: 10px; vertical-align: sub;">2</span><span style="font-family: arial,sans-serif;">(3)·b| + |log</span><span style="font-family: arial,sans-serif; font-size: 10px; vertical-align: sub;">2</span><span style="font-family: arial,sans-serif;">(5)·c| + |log</span><span style="font-family: arial,sans-serif; font-size: 10px; vertical-align: sub;">2</span><span style="font-family: arial,sans-serif;">(7)·d| + ... . This is a variant of the ordinary L1 norm where each coordinate is weighted in proportion to the log</span><span style="font-family: arial,sans-serif; font-size: 10px; vertical-align: sub;">2</span><span style="font-family: arial,sans-serif;"> of the prime that it represents. As we will soon see below, generalizations of the Tenney norm that correspond to other weighted Lp norms also exist; these we will call </span>**Tp norms**, with the Tenney norm being designated the **T1 norm**.</span> <span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">In its full generality, the Tenney norm of any interval space can be expressed as follows:</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> \left \| \vec{v} \right \|_{\textbf{T1}} = \left \| \mathbf{W} \cdot \mathbf{V} \cdot \vec{v} \right \|_1 where **V** is a [[xenharmonic/Subgroup Mapping Matrices (V-maps)|V-map]] in which the columns are monzos express</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">For interval spaces corresponding to a group of monzos where the basis is set to consist of only primes or prime powers, the Tenney norm of any interval v can be represented by the expression</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">\left \| \vec{v} \right \|_{\textbf{T1}} = \left \| \mathbf{W} \cdot \vec{v} \right \|_1</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">where **W** is a diagonal "weighting matrix" such that the nth entry in the diagonal is the log<span style="font-size: 10px; vertical-align: sub;">2</span> of the interval represented by the nth coordinate of the monzo. For Tenney norms on these spaces, the unit sphere will look like the ordinary L1 unit sphere, but be dilated a different amount along each axis.</span>
Original HTML content:
<html><head><title>Generalized Tenney Norms and Tp Interval Space</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Basics"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif;">Basics</span></h1> <span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"><br /> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">It can be useful to define a notion of the "complexity" of an interval, so that small-integer ratios such as 3/2 are less complex and intervals such as 32805/32768 are more complex. This can be accomplished for any free abelian group of monzos or smonzos by embedding the group in a normed vector space, so that the norm of any interval is taken to be its complexity. Alternatively, if one prefers to think of the monzos as forming a <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℤ</span>-module, the vector space can be constructed by simply allowing the existence of monzos with real coordinates, hence defining the module over <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℝ</span> instead of <span style="background-color: #f9f9f9; font-family: sans-serif; font-size: 15px;">ℤ</span> and giving it the added structure of being a vector space. In either case, the resulting space is called <a class="wiki_link" href="/Monzos%20and%20Interval%20Space">interval space</a>, with the monzos forming the lattice of vectors with integer coordinates.</span><br /> <span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">The most important and natural norm which arises in this scenario is the Tenney norm, which we will explore below.</span><br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="The Tenney Norm (T1 norm)"></a><!-- ws:end:WikiTextHeadingRule:2 --><span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif;">The Tenney Norm (T1 norm)</span></h1> <br /> <span style="background-color: #ffffff; color: #222222; display: block;"><span style="font-family: arial,sans-serif;">The <strong>Tenney norm</strong>, also called <strong>Tenney height</strong>, is the norm such that for any monzo representing an interval a/b, the norm of the interval is log(a·b). For a full-limit monzo |a b c d ...>, this norm can be calculated as |log</span><span style="font-family: arial,sans-serif; font-size: 10px; vertical-align: sub;">2</span><span style="font-family: arial,sans-serif;">(2)·a| + |log</span><span style="font-family: arial,sans-serif; font-size: 10px; vertical-align: sub;">2</span><span style="font-family: arial,sans-serif;">(3)·b| + |log</span><span style="font-family: arial,sans-serif; font-size: 10px; vertical-align: sub;">2</span><span style="font-family: arial,sans-serif;">(5)·c| + |log</span><span style="font-family: arial,sans-serif; font-size: 10px; vertical-align: sub;">2</span><span style="font-family: arial,sans-serif;">(7)·d| + ... . This is a variant of the ordinary L1 norm where each coordinate is weighted in proportion to the log</span><span style="font-family: arial,sans-serif; font-size: 10px; vertical-align: sub;">2</span><span style="font-family: arial,sans-serif;"> of the prime that it represents. As we will soon see below, generalizations of the Tenney norm that correspond to other weighted Lp norms also exist; these we will call </span><strong>Tp norms</strong>, with the Tenney norm being designated the <strong>T1 norm</strong>.</span><br /> <br /> <span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">In its full generality, the Tenney norm of any interval space can be expressed as follows:</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"><br /> \left \| \vec{v} \right \|_{\textbf{T1}} = \left \| \mathbf{W} \cdot \mathbf{V} \cdot \vec{v} \right \|_1<br /> <br /> where <strong>V</strong> is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Subgroup%20Mapping%20Matrices%20%28V-maps%29">V-map</a> in which the columns are monzos express</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"><br /> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">For interval spaces corresponding to a group of monzos where the basis is set to consist of only primes or prime powers, the Tenney norm of any interval v can be represented by the expression</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"><br /> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">\left \| \vec{v} \right \|_{\textbf{T1}} = \left \| \mathbf{W} \cdot \vec{v} \right \|_1</span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"><br /> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;"><br /> </span><span style="background-color: #ffffff; color: #222222; display: block; font-family: arial,sans-serif;">where <strong>W</strong> is a diagonal "weighting matrix" such that the nth entry in the diagonal is the log<span style="font-size: 10px; vertical-align: sub;">2</span> of the interval represented by the nth coordinate of the monzo. For Tenney norms on these spaces, the unit sphere will look like the ordinary L1 unit sphere, but be dilated a different amount along each axis.</span></body></html>