Taxicab distance: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>guest
**Imported revision 250952112 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
One measurement of the complexity of the comma could be the number of prime factors it has, regardless of their magnitude, but counting repetitions.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2011-09-05 17:52:49 UTC</tt>.<br>
: The original revision id was <tt>250952112</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">One measurement of the complexity of the comma could be the number of prime factors it has, regardless of their magnitude, but counting repetitions.


When combined with excluding the smallest primes, this measurement can give an idea of how many "strange harmonic moves" a comma is comprised of.
When combined with excluding the smallest primes, this measurement can give an idea of how many "strange harmonic moves" a comma is comprised of.


=How to calculate taxicab distance on a prime-number lattice=  
=How to calculate taxicab distance on a prime-number lattice=


To calculate the taxicab distance between 1/1 and any interval, take the sum of the absolute values of the exponents of the prime factorization. For the example of 81/80:
To calculate the taxicab distance between 1/1 and any interval, take the sum of the absolute values of the exponents of the prime factorization. For the example of 81/80:
Line 17: Line 10:
|-4| + |4| + |-1| = 9
|-4| + |4| + |-1| = 9


This corresponds to an interval's unweighted [[http://en.wikipedia.org/wiki/Lp_space|L1]] distance on a prime-factor lattice, as opposed to the more common weighted L1 metric, corresponding to the log of Tenney/Benedetti Height.
This corresponds to an interval's unweighted [http://en.wikipedia.org/wiki/Lp_space L1] distance on a prime-factor lattice, as opposed to the more common weighted L1 metric, corresponding to the log of Tenney/Benedetti Height.


One way to add weighting back in is to exclude powers of 2 (to assume that powers of 2 don't affect the complexity of the move). For 81/80 we then get 4+1=5.
One way to add weighting back in is to exclude powers of 2 (to assume that powers of 2 don't affect the complexity of the move). For 81/80 we then get 4+1=5.


If you discard powers of both 2 and 3, you get an understanding of commas relevant to [[sagittal corner|Sagittal notation]], which notates higher-prime-limit ratios in terms of their deviation from a cycle of fifths. In this sense, 81/80 has a taxicab distance of 1, as it contains only a single instance of 5, which is why in Sagittal notation it is called the "5-comma".
If you discard powers of both 2 and 3, you get an understanding of commas relevant to [[Sagittal_Corner|Sagittal notation]], which notates higher-prime-limit ratios in terms of their deviation from a cycle of fifths. In this sense, 81/80 has a taxicab distance of 1, as it contains only a single instance of 5, which is why in Sagittal notation it is called the "5-comma".


=With powers of 2 taken for granted=  
=With powers of 2 taken for granted=


==2-move commas==  
==2-move commas==
16/15 ( / 3 / 5)
16/15 ( / 3 / 5)
33/32 (3 * 11)
33/32 (3 * 11)
65/64 (5 * 13)
65/64 (5 * 13)


==3-move commas==  
==3-move commas==
25/24 (5 * 5 / 3)
25/24 (5 * 5 / 3)
128/125 (5 * 5 * 5)
128/125 (5 * 5 * 5)
21/20 (3 * 7 / 5)
21/20 (3 * 7 / 5)
26/25 (13 / 5 / 5)
26/25 (13 / 5 / 5)
49/48 (7 * 7 / 3)
49/48 (7 * 7 / 3)
64/63 ( / 3 / 7 / 7)
64/63 ( / 3 / 7 / 7)
256/245 ( / 5 / 7 / 7)
256/245 ( / 5 / 7 / 7)
80/77 (5 / 7 / 11)
80/77 (5 / 7 / 11)
22/21 (11 / 3 / 7)
22/21 (11 / 3 / 7)
40/39 (5 / 3 / 13)
40/39 (5 / 3 / 13)
96/91 (3 / 7 / 13)
96/91 (3 / 7 / 13)
55/52 (5 * 11 / 13)
55/52 (5 * 11 / 13)
1024/1001 (7 * 11 * 13)
1024/1001 (7 * 11 * 13)
512/507 (3 * 13 * 13)
512/507 (3 * 13 * 13)
169/160 (13 * 13 / 5)
169/160 (13 * 13 / 5)
176/169 (11 / 13 / 13)
176/169 (11 / 13 / 13)


=With powers of 2 and 3 taken for granted=  
=With powers of 2 and 3 taken for granted=
The relation of powers of 3 to the other factor(s) is represented by "3's". The ones with names (all of them so far) have a corresponding sagittal accidental, though closeby commas share symbols.
The relation of powers of 3 to the other factor(s) is represented by "3's". The ones with names (all of them so far) have a corresponding sagittal accidental, though closeby commas share symbols.


==1-move commas==  
==1-move commas==
81/80 ( 3's / 5 ) (5 comma)
81/80 ( 3's / 5 ) (5 comma)
32805/32768 ( 3's * 5 ) (5 schisma)
32805/32768 ( 3's * 5 ) (5 schisma)
64/63 ( / 3's / 7) (7 comma)
64/63 ( / 3's / 7) (7 comma)
729/704 ( 3's / 11 ) (11-L diesis)
729/704 ( 3's / 11 ) (11-L diesis)
33/32 ( 3's * 11 ) (11-M diesis)
33/32 ( 3's * 11 ) (11-M diesis)
27/26 ( 3's / 13 ) (13-L diesis)
27/26 ( 3's / 13 ) (13-L diesis)
1053/1024 ( 3's * 13 ) (13 M-diesis)
1053/1024 ( 3's * 13 ) (13 M-diesis)
2187/2176 ( 3's / 17 ) (17 kleisma)
2187/2176 ( 3's / 17 ) (17 kleisma)
4131/4096 ( 3's * 17 ) (17 comma)
4131/4096 ( 3's * 17 ) (17 comma)
513/512 ( 3's * 19 ) (19 schisma)
513/512 ( 3's * 19 ) (19 schisma)
19683/19456 ( 3's / 19 ) (19 comma)
19683/19456 ( 3's / 19 ) (19 comma)
736/729 ( 23 / 3's ) (23 comma)
736/729 ( 23 / 3's ) (23 comma)
261/256 ( 3's * 29 ) (29 comma)
261/256 ( 3's * 29 ) (29 comma)


==2-move commas==  
==2-move commas==
(ordered and grouped by size of comma in just intonation)
(ordered and grouped by size of comma in just intonation)


5103/5120 ( 3's * 7 / 5 ) (5:7 kleisma)
5103/5120 ( 3's * 7 / 5 ) (5:7 kleisma)
352/351 ( 11 / 3's / 13 ) (11:13 kleisma)
352/351 ( 11 / 3's / 13 ) (11:13 kleisma)


896/891 ( 7 / 3's / 11 ) (7:11 kleisma)
896/891 ( 7 / 3's / 11 ) (7:11 kleisma)
2048/2025 ( / 3's / 5 / 5 ) (25 comma/[[diaschisma]])
 
2048/2025 ( / 3's / 5 / 5 ) (25 comma/[[diaschisma|diaschisma]])
 
55/54 ( 11 * 5 / 3's ) (55 comma)
55/54 ( 11 * 5 / 3's ) (55 comma)


45927/45056 ( 3's * 7 / 11 ) (7:11 comma)
45927/45056 ( 3's * 7 / 11 ) (7:11 comma)
52/51 ( 3's * 13 / 17 ) (13:17 comma)
52/51 ( 3's * 13 / 17 ) (13:17 comma)


45/44 ( 3's * 5 / 11 ) (5:11 S-diesis)
45/44 ( 3's * 5 / 11 ) (5:11 S-diesis)
1701/1664 ( 3's * 7 / 13 ) (7:13 S-diesis)
1701/1664 ( 3's * 7 / 13 ) (7:13 S-diesis)
1408/1377 ( 11 / 3's / 17 ) (11:17 S-diesis)
1408/1377 ( 11 / 3's / 17 ) (11:17 S-diesis)


6561/6400 ( 3's / 5 / 5 ) (25 S-diesis)
6561/6400 ( 3's / 5 / 5 ) (25 S-diesis)
40/39 ( 5 / 3's / 13 ) (5:13 S-diesis)
40/39 ( 5 / 3's / 13 ) (5:13 S-diesis)


Line 90: Line 119:
8505/8192 ( 3's * 5 * 7 ) (35 L-diesis)
8505/8192 ( 3's * 5 * 7 ) (35 L-diesis)


==3-move commas==  
==3-move commas==
250/243 ( 5 * 5 * 5 / 3's ) (125 M-diesis)
250/243 ( 5 * 5 * 5 / 3's ) (125 M-diesis)
531441/512000 ( 3's / 5 / 5 / 5 ) (125 L-diesis)</pre></div>
 
<h4>Original HTML content:</h4>
531441/512000 ( 3's / 5 / 5 / 5 ) (125 L-diesis)
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;commas by taxicab distance&lt;/title&gt;&lt;/head&gt;&lt;body&gt;One measurement of the complexity of the comma could be the number of prime factors it has, regardless of their magnitude, but counting repetitions.&lt;br /&gt;
[[Category:todo:link]]
&lt;br /&gt;
When combined with excluding the smallest primes, this measurement can give an idea of how many &amp;quot;strange harmonic moves&amp;quot; a comma is comprised of.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="How to calculate taxicab distance on a prime-number lattice"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;How to calculate taxicab distance on a prime-number lattice&lt;/h1&gt;
&lt;br /&gt;
To calculate the taxicab distance between 1/1 and any interval, take the sum of the absolute values of the exponents of the prime factorization. For the example of 81/80:&lt;br /&gt;
&lt;br /&gt;
81/80 = 2^-4 * 3^4 * 5^-1&lt;br /&gt;
|-4| + |4| + |-1| = 9&lt;br /&gt;
&lt;br /&gt;
This corresponds to an interval's unweighted &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Lp_space" rel="nofollow"&gt;L1&lt;/a&gt; distance on a prime-factor lattice, as opposed to the more common weighted L1 metric, corresponding to the log of Tenney/Benedetti Height.&lt;br /&gt;
&lt;br /&gt;
One way to add weighting back in is to exclude powers of 2 (to assume that powers of 2 don't affect the complexity of the move). For 81/80 we then get 4+1=5.&lt;br /&gt;
&lt;br /&gt;
If you discard powers of both 2 and 3, you get an understanding of commas relevant to &lt;a class="wiki_link" href="/sagittal%20corner"&gt;Sagittal notation&lt;/a&gt;, which notates higher-prime-limit ratios in terms of their deviation from a cycle of fifths. In this sense, 81/80 has a taxicab distance of 1, as it contains only a single instance of 5, which is why in Sagittal notation it is called the &amp;quot;5-comma&amp;quot;.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="With powers of 2 taken for granted"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;With powers of 2 taken for granted&lt;/h1&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="With powers of 2 taken for granted-2-move commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;2-move commas&lt;/h2&gt;
16/15 ( / 3 / 5)&lt;br /&gt;
33/32 (3 * 11)&lt;br /&gt;
65/64 (5 * 13)&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="With powers of 2 taken for granted-3-move commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;3-move commas&lt;/h2&gt;
25/24 (5 * 5 / 3)&lt;br /&gt;
128/125 (5 * 5 * 5)&lt;br /&gt;
21/20 (3 * 7 / 5)&lt;br /&gt;
26/25 (13 / 5 / 5)&lt;br /&gt;
49/48 (7 * 7 / 3)&lt;br /&gt;
64/63 ( / 3 / 7 / 7)&lt;br /&gt;
256/245 ( / 5 / 7 / 7)&lt;br /&gt;
80/77 (5 / 7 / 11)&lt;br /&gt;
22/21 (11 / 3 / 7)&lt;br /&gt;
40/39 (5 / 3 / 13)&lt;br /&gt;
96/91 (3 / 7 / 13)&lt;br /&gt;
55/52 (5 * 11 / 13)&lt;br /&gt;
1024/1001 (7 * 11 * 13)&lt;br /&gt;
512/507 (3 * 13 * 13)&lt;br /&gt;
169/160 (13 * 13 / 5)&lt;br /&gt;
176/169 (11 / 13 / 13)&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="With powers of 2 and 3 taken for granted"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;With powers of 2 and 3 taken for granted&lt;/h1&gt;
The relation of powers of 3 to the other factor(s) is represented by &amp;quot;3's&amp;quot;. The ones with names (all of them so far) have a corresponding sagittal accidental, though closeby commas share symbols.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="With powers of 2 and 3 taken for granted-1-move commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;1-move commas&lt;/h2&gt;
81/80 ( 3's / 5 ) (5 comma)&lt;br /&gt;
32805/32768 ( 3's * 5 ) (5 schisma)&lt;br /&gt;
64/63 ( / 3's / 7) (7 comma)&lt;br /&gt;
729/704 ( 3's / 11 ) (11-L diesis)&lt;br /&gt;
33/32 ( 3's * 11 ) (11-M diesis)&lt;br /&gt;
27/26 ( 3's / 13 ) (13-L diesis)&lt;br /&gt;
1053/1024 ( 3's * 13 ) (13 M-diesis)&lt;br /&gt;
2187/2176 ( 3's / 17 ) (17 kleisma)&lt;br /&gt;
4131/4096 ( 3's * 17 ) (17 comma)&lt;br /&gt;
513/512 ( 3's * 19 ) (19 schisma)&lt;br /&gt;
19683/19456 ( 3's / 19 ) (19 comma)&lt;br /&gt;
736/729 ( 23 / 3's ) (23 comma)&lt;br /&gt;
261/256 ( 3's * 29 ) (29 comma)&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="With powers of 2 and 3 taken for granted-2-move commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;2-move commas&lt;/h2&gt;
(ordered and grouped by size of comma in just intonation)&lt;br /&gt;
&lt;br /&gt;
5103/5120 ( 3's * 7 / 5 ) (5:7 kleisma)&lt;br /&gt;
352/351 ( 11 / 3's / 13 ) (11:13 kleisma)&lt;br /&gt;
&lt;br /&gt;
896/891 ( 7 / 3's / 11 ) (7:11 kleisma)&lt;br /&gt;
2048/2025 ( / 3's / 5 / 5 ) (25 comma/&lt;a class="wiki_link" href="/diaschisma"&gt;diaschisma&lt;/a&gt;)&lt;br /&gt;
55/54 ( 11 * 5 / 3's ) (55 comma)&lt;br /&gt;
&lt;br /&gt;
45927/45056 ( 3's * 7 / 11 ) (7:11 comma)&lt;br /&gt;
52/51 ( 3's * 13 / 17 ) (13:17 comma)&lt;br /&gt;
&lt;br /&gt;
45/44 ( 3's * 5 / 11 ) (5:11 S-diesis)&lt;br /&gt;
1701/1664 ( 3's * 7 / 13 ) (7:13 S-diesis)&lt;br /&gt;
1408/1377 ( 11 / 3's / 17 ) (11:17 S-diesis)&lt;br /&gt;
&lt;br /&gt;
6561/6400 ( 3's / 5 / 5 ) (25 S-diesis)&lt;br /&gt;
40/39 ( 5 / 3's / 13 ) (5:13 S-diesis)&lt;br /&gt;
&lt;br /&gt;
36/35 ( 3's / 5 / 7 ) (35 M-diesis)&lt;br /&gt;
&lt;br /&gt;
8505/8192 ( 3's * 5 * 7 ) (35 L-diesis)&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="With powers of 2 and 3 taken for granted-3-move commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;3-move commas&lt;/h2&gt;
250/243 ( 5 * 5 * 5 / 3's ) (125 M-diesis)&lt;br /&gt;
531441/512000 ( 3's / 5 / 5 / 5 ) (125 L-diesis)&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

One measurement of the complexity of the comma could be the number of prime factors it has, regardless of their magnitude, but counting repetitions.

When combined with excluding the smallest primes, this measurement can give an idea of how many "strange harmonic moves" a comma is comprised of.

How to calculate taxicab distance on a prime-number lattice

To calculate the taxicab distance between 1/1 and any interval, take the sum of the absolute values of the exponents of the prime factorization. For the example of 81/80:

81/80 = 2^-4 * 3^4 * 5^-1 |-4| + |4| + |-1| = 9

This corresponds to an interval's unweighted L1 distance on a prime-factor lattice, as opposed to the more common weighted L1 metric, corresponding to the log of Tenney/Benedetti Height.

One way to add weighting back in is to exclude powers of 2 (to assume that powers of 2 don't affect the complexity of the move). For 81/80 we then get 4+1=5.

If you discard powers of both 2 and 3, you get an understanding of commas relevant to Sagittal notation, which notates higher-prime-limit ratios in terms of their deviation from a cycle of fifths. In this sense, 81/80 has a taxicab distance of 1, as it contains only a single instance of 5, which is why in Sagittal notation it is called the "5-comma".

With powers of 2 taken for granted

2-move commas

16/15 ( / 3 / 5)

33/32 (3 * 11)

65/64 (5 * 13)

3-move commas

25/24 (5 * 5 / 3)

128/125 (5 * 5 * 5)

21/20 (3 * 7 / 5)

26/25 (13 / 5 / 5)

49/48 (7 * 7 / 3)

64/63 ( / 3 / 7 / 7)

256/245 ( / 5 / 7 / 7)

80/77 (5 / 7 / 11)

22/21 (11 / 3 / 7)

40/39 (5 / 3 / 13)

96/91 (3 / 7 / 13)

55/52 (5 * 11 / 13)

1024/1001 (7 * 11 * 13)

512/507 (3 * 13 * 13)

169/160 (13 * 13 / 5)

176/169 (11 / 13 / 13)

With powers of 2 and 3 taken for granted

The relation of powers of 3 to the other factor(s) is represented by "3's". The ones with names (all of them so far) have a corresponding sagittal accidental, though closeby commas share symbols.

1-move commas

81/80 ( 3's / 5 ) (5 comma)

32805/32768 ( 3's * 5 ) (5 schisma)

64/63 ( / 3's / 7) (7 comma)

729/704 ( 3's / 11 ) (11-L diesis)

33/32 ( 3's * 11 ) (11-M diesis)

27/26 ( 3's / 13 ) (13-L diesis)

1053/1024 ( 3's * 13 ) (13 M-diesis)

2187/2176 ( 3's / 17 ) (17 kleisma)

4131/4096 ( 3's * 17 ) (17 comma)

513/512 ( 3's * 19 ) (19 schisma)

19683/19456 ( 3's / 19 ) (19 comma)

736/729 ( 23 / 3's ) (23 comma)

261/256 ( 3's * 29 ) (29 comma)

2-move commas

(ordered and grouped by size of comma in just intonation)

5103/5120 ( 3's * 7 / 5 ) (5:7 kleisma)

352/351 ( 11 / 3's / 13 ) (11:13 kleisma)

896/891 ( 7 / 3's / 11 ) (7:11 kleisma)

2048/2025 ( / 3's / 5 / 5 ) (25 comma/diaschisma)

55/54 ( 11 * 5 / 3's ) (55 comma)

45927/45056 ( 3's * 7 / 11 ) (7:11 comma)

52/51 ( 3's * 13 / 17 ) (13:17 comma)

45/44 ( 3's * 5 / 11 ) (5:11 S-diesis)

1701/1664 ( 3's * 7 / 13 ) (7:13 S-diesis)

1408/1377 ( 11 / 3's / 17 ) (11:17 S-diesis)

6561/6400 ( 3's / 5 / 5 ) (25 S-diesis)

40/39 ( 5 / 3's / 13 ) (5:13 S-diesis)

36/35 ( 3's / 5 / 7 ) (35 M-diesis)

8505/8192 ( 3's * 5 * 7 ) (35 L-diesis)

3-move commas

250/243 ( 5 * 5 * 5 / 3's ) (125 M-diesis)

531441/512000 ( 3's / 5 / 5 / 5 ) (125 L-diesis)