Tour of regular temperaments: Difference between revisions
No edit summary |
|||
Line 153: | Line 153: | ||
; [[Luna family|Luna or Sasa-quintrigu family]] (P8, ccP4/15) | ; [[Luna family|Luna or Sasa-quintrigu family]] (P8, ccP4/15) | ||
: This tempers out the luna comma, {{Monzo|38 -2 -15}} = 274877906944/274658203125. The generator is ~{{Monzo|18 -1 -7}} = ~193¢. Two generators equals ~5/4, and fifteen generators equals a double-compound 4th of ~16/3. | : This tempers out the luna comma, {{Monzo|38 -2 -15}} = 274877906944/274658203125. The generator is ~{{Monzo|18 -1 -7}} = ~193¢. Two generators equals ~5/4, and fifteen generators equals a double-compound 4th of ~16/3. | ||
; [[Vavoom family|Vavoom or Quinla-seyo family]] (P8, P12/17) | |||
: This tempers out the vavoom comma, {{Monzo|-68 18 17}}. The generator is ~16/15 = ~111.9¢. Seventeen generators equals a twelfth = ~3/1. 5/4 is equated to two octaves minus 18 generators. | |||
; [[Minortonic family|Minortonic or Trila-segu family]] (P8, ccP5/17) | ; [[Minortonic family|Minortonic or Trila-segu family]] (P8, ccP5/17) | ||
Line 158: | Line 161: | ||
; [[Maja family|Maja or Saseyo family]] (P8, c<sup>6</sup>P4/17) | ; [[Maja family|Maja or Saseyo family]] (P8, c<sup>6</sup>P4/17) | ||
: This tempers out the maja comma, {{Monzo|-3 -23 17}} = 762939453125/753145430616. The generator is ~162/125 = ~453¢. Seventeen generators equals a sextuple-compound 4th. | : This tempers out the maja comma, {{Monzo|-3 -23 17}} = 762939453125/753145430616. The generator is ~162/125 = ~453¢. Seventeen generators equals a sextuple-compound 4th. 5/4 is equated to 9 octaves minus 23 generators. | ||
; [[Maquila family|Maquila or Trisa-segu family]] (P8, c<sup>7</sup>P5/17) | ; [[Maquila family|Maquila or Trisa-segu family]] (P8, c<sup>7</sup>P5/17) |