Constant structure: Difference between revisions
m Internal link, misc. edits |
clarified and expanded diatonic scale example and interval matrix discussion |
||
Line 1: | Line 1: | ||
A [[scale]] is said to have '''constant structure''' ('''CS''') if its [[interval class]]es are distinct. That is, each [[interval size]] that occurs in the scale always [[subtend]]s the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place. | A [[scale]] is said to have '''constant structure''' ('''CS''') if its [[interval class]]es are distinct. That is, each [[interval size]] that occurs in the scale always [[subtend]]s the same number of scale steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place. | ||
The term "constant structure" was coined by [[Erv Wilson]]. In academic music theory, constant structure is called the partitioning property, but Erv got there first. | The term "constant structure" was coined by [[Erv Wilson]]. In academic music theory, constant structure is called the partitioning property, but Erv got there first. | ||
Line 5: | Line 5: | ||
In terms of [[Rothenberg propriety]], strictly proper scales have CS, and proper but not strictly proper scales do not. Improper scales generally do. However the [[22edo]] scale C D E vF# G ^Ab B C (<code>4-4-3-2-2-6-1</code>) has both ambiguity (C-vF# 4th equals vF#-C 5th) and contradiction (^Ab-B 2nd exceeds E-G 3rd). The contradiction makes it improper and the ambiguity makes it not CS. | In terms of [[Rothenberg propriety]], strictly proper scales have CS, and proper but not strictly proper scales do not. Improper scales generally do. However the [[22edo]] scale C D E vF# G ^Ab B C (<code>4-4-3-2-2-6-1</code>) has both ambiguity (C-vF# 4th equals vF#-C 5th) and contradiction (^Ab-B 2nd exceeds E-G 3rd). The contradiction makes it improper and the ambiguity makes it not CS. | ||
To determine if a scale | To determine if a scale has CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]], in which each entry gives the interval spanning the number of scale steps indicated by the column, beginning with step indicated by the row. In a CS scale, each interval in the matrix must appear in only one column, corresponding to the “constant” number of steps for that interval. | ||
== Examples == | == Examples == | ||
=== Pentatonic scales === | |||
This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1 | This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1 | ||
Line 62: | Line 64: | ||
| 2/1 | | 2/1 | ||
|} | |} | ||
Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, | Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, always spans four steps of this scale — never three or five. | ||
In contrast, this pentatonic scale is ''not'' a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1 | |||
Its interval matrix: | Its interval matrix: | ||
Line 117: | Line 119: | ||
| 2/1 | | 2/1 | ||
|} | |} | ||
Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as | Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as either two or three steps of the scale. Thus, this scale does not have constant structure. | ||
=== Diatonic scales === | |||
Another example of a familiar scale that is ''not'' CS is the [[12edo]] tuning of the 7-note [[diatonic scale]]. | |||
Its interval matrix: | |||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
Line 134: | Line 138: | ||
! (8) | ! (8) | ||
|- | |- | ||
! 0 | ! 0\12 | ||
| 0 | | 0\12 | ||
| 2 | | 2\12 | ||
| 4 | | 4\12 | ||
| 5 | | 5\12 | ||
| 7 | | 7\12 | ||
| 9 | | 9\12 | ||
| 11 | | 11\12 | ||
| 12 | | 12\12 | ||
|- | |- | ||
! 2 | ! 2\12 | ||
| 0 | | 0\12 | ||
| 2 | | 2\12 | ||
| 3 | | 3\12 | ||
| 5 | | 5\12 | ||
| 7 | | 7\12 | ||
| 9 | | 9\12 | ||
| 10 | | 10\12 | ||
| 12 | | 12\12 | ||
|- | |- | ||
! 4 | ! 4\12 | ||
| 0 | | 0\12 | ||
| 1 | | 1\12 | ||
| 3 | | 3\12 | ||
| 5 | | 5\12 | ||
| 7 | | 7\12 | ||
| 8 | | 8\12 | ||
| 10 | | 10\12 | ||
| 12 | | 12\12 | ||
|- | |- | ||
! 5 | ! 5\12 | ||
| 0 | | 0\12 | ||
| 2 | | 2\12 | ||
| 4 | | 4\12 | ||
| <span style="background-color: #ffcc44;">6</span> | | <span style="background-color: #ffcc44;">6\12</span> | ||
| 7 | | 7\12 | ||
| 9 | | 9\12 | ||
| 11 | | 11\12 | ||
| 12 | | 12\12 | ||
|- | |- | ||
! 7 | ! 7\12 | ||
| 0 | | 0\12 | ||
| 2 | | 2\12 | ||
| 4 | | 4\12 | ||
| 5 | | 5\12 | ||
| 7 | | 7\12 | ||
| 9 | | 9\12 | ||
| 10 | | 10\12 | ||
| 12 | | 12\12 | ||
|- | |- | ||
! 9 | ! 9\12 | ||
| 0 | | 0\12 | ||
| 2 | | 2\12 | ||
| 3 | | 3\12 | ||
| 5 | | 5\12 | ||
| 7 | | 7\12 | ||
| 8 | | 8\12 | ||
| 10 | | 10\12 | ||
| 12 | | 12\12 | ||
|- | |- | ||
! 11 | ! 11\12 | ||
| 0 | | 0\12 | ||
| 1 | | 1\12 | ||
| 3 | | 3\12 | ||
| 5 | | 5\12 | ||
| <span style="background-color: #ffcc44;">6</span> | | <span style="background-color: #ffcc44;">6\12</span> | ||
| 8 | | 8\12 | ||
| 10 | | 10\12 | ||
| 12 | | 12\12 | ||
|} | |} | ||
The corresponding note names: | |||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
Line 229: | Line 233: | ||
|- | |- | ||
! D | ! D | ||
| D | | D | ||
| | | E | ||
| F | | F | ||
| G | | G | ||
| A | | A | ||
| | | B | ||
| C | | C | ||
| D | |||
|- | |- | ||
! E | ! E | ||
| | | E | ||
| F | | F | ||
| G | | G | ||
| | | A | ||
| | | B | ||
| C | | C | ||
| D | |||
| E | |||
|- | |- | ||
! F | ! F | ||
| F | |||
| G | |||
| A | |||
| <span style="background-color: #ffcc44;">B</span> | |||
| C | | C | ||
| D | | D | ||
| E | | E | ||
| | | F | ||
|- | |||
! G | |||
| G | | G | ||
| A | | A | ||
| B | | B | ||
| C | | C | ||
| D | | D | ||
Line 264: | Line 271: | ||
| F | | F | ||
| G | | G | ||
|- | |- | ||
! A | ! A | ||
| A | |||
| B | |||
| C | | C | ||
| D | | D | ||
| | | E | ||
| F | | F | ||
| G | | G | ||
| | | A | ||
|- | |- | ||
! B | ! B | ||
| B | |||
| C | | C | ||
| | | D | ||
| | | E | ||
| F | | <span style="background-color: #ffcc44;">F</span> | ||
| <span style="background-color: #ffcc44;"> | | G | ||
| | | A | ||
| | | B | ||
| | |} | ||
In 12edo, the intervals from F to B and from B to F are the same size: 6\12, or 600 cents. From F to B, this interval spans four steps of our diatonic scale; but from B to F it spans five. Since the same 6\12 interval spans different numbers of scale steps at different points in the scale, this scale is not a constant structure. | |||
However, in other tunings of the diatonic scale, the F–B and B–F intervals may have distinct sizes. For example, [[31edo]] (meantone) tunes F–B and B–F to 15\31 (581¢) and 16\31 (619¢) respectively: | |||
{| class="wikitable center-all" | |||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |||
! 0\31 | |||
| 0\31 | |||
| 5\31 | |||
| 10\31 | |||
| 13\31 | |||
| 18\31 | |||
| 23\31 | |||
| 28\31 | |||
| 31\31 | |||
|- | |||
! 5\31 | |||
| 0\31 | |||
| 5\31 | |||
| 8\31 | |||
| 13\31 | |||
| 18\31 | |||
| 23\31 | |||
| 26\31 | |||
| 31\31 | |||
|- | |||
! 10\31 | |||
| 0\31 | |||
| 3\31 | |||
| 8\31 | |||
| 13\31 | |||
| 18\31 | |||
| 21\31 | |||
| 26\31 | |||
| 31\31 | |||
|- | |||
! 13\31 | |||
| 0\31 | |||
| 5\31 | |||
| 10\31 | |||
| <span style="background-color: #ffcc44;">15\31</span> | |||
| 18\31 | |||
| 23\31 | |||
| 28\31 | |||
| 31\31 | |||
|- | |||
! 18\31 | |||
| 0\31 | |||
| 5\31 | |||
| 10\31 | |||
| 13\31 | |||
| 18\31 | |||
| 23\31 | |||
| 26\31 | |||
| 31\31 | |||
|- | |||
! 23\31 | |||
| 0\31 | |||
| 5\31 | |||
| 8\31 | |||
| 13\31 | |||
| 18\31 | |||
| 21\31 | |||
| 26\31 | |||
| 31\31 | |||
|- | |||
! 28\31 | |||
| 0\31 | |||
| 3\31 | |||
| 8\31 | |||
| 13\31 | |||
| <span style="background-color: #ffcc44;">16\31</span> | |||
| 21\31 | |||
| 26\31 | |||
| 31\31 | |||
|} | |} | ||
Since each interval in the 31edo table appears in a consistent column, the 31edo tuning of the diatonic scale ''is'' a constant structure. | |||
Similarly, the [[22edo]] diatonic scale, which tunes F–B wider than B–F, is ''also'' a constant structure. Even though it has a four-scale-step interval that is larger than a five-step interval (making it “improper”), each distinct interval size still appears in only one column: | |||
{| class="wikitable center-all" | |||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |||
! 0\22 | |||
| 0\22 | |||
| 4\22 | |||
| 8\22 | |||
| 9\22 | |||
| 13\22 | |||
| 17\22 | |||
| 21\22 | |||
| 22\22 | |||
|- | |||
! 4\22 | |||
| 0\22 | |||
| 4\22 | |||
| 5\22 | |||
| 9\22 | |||
| 13\22 | |||
| 17\22 | |||
| 18\22 | |||
| 22\22 | |||
|- | |||
! 8\22 | |||
| 0\22 | |||
| 1\22 | |||
| 5\22 | |||
| 9\22 | |||
| 13\22 | |||
| 14\22 | |||
| 18\22 | |||
| 22\22 | |||
|- | |||
! 9\22 | |||
| 0\22 | |||
| 4\22 | |||
| 8\22 | |||
| <span style="background-color: #ffcc44;">12\22</span> | |||
| 13\22 | |||
| 17\22 | |||
| 21\22 | |||
| 22\22 | |||
|- | |||
! 13\22 | |||
| 0\22 | |||
| 4\22 | |||
| 8\22 | |||
| 9\22 | |||
| 13\22 | |||
| 17\22 | |||
| 18\22 | |||
| 22\22 | |||
|- | |||
! 17\22 | |||
| 0\22 | |||
| 4\22 | |||
| 5\22 | |||
| 9\22 | |||
| 13\22 | |||
| 14\22 | |||
| 18\22 | |||
| 22\22 | |||
|- | |||
! 21\22 | |||
| 0\22 | |||
| 1\22 | |||
| 5\22 | |||
| 9\22 | |||
| <span style="background-color: #ffcc44;">10\22</span> | |||
| 14\22 | |||
| 18\22 | |||
| 22\22 | |||
|} | |||
== Density of CS scales in EDOs == | == Density of CS scales in EDOs == |