Hemififths/Chords: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 287999812 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
Below are listed the [[Dyadic_chord|dyadic chords]] of 11-limit [[Breedsmic_temperaments#Hemififths|hemififths temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths".
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-21 15:02:00 UTC</tt>.<br>
: The original revision id was <tt>287999812</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Breedsmic temperaments#Hemififths|hemififths temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths".


A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.
A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.


=Triads=
=Triads=
|| Number || Chord || Transversal || Type ||
 
|| 1 || 0-1-2 || 1-11/9-3/2 || rastmic ||
{| class="wikitable"
|| 2 || 0-1-3 || 1-11/9-11/6 || utonal ||
|-
|| 3 || 0-2-3 || 1-3/2-11/6 || otonal ||
| | Number
|| 4 || 0-1-4 || 1-11/9-9/8 || rastmic ||
| | Chord
|| 5 || 0-2-4 || 1-3/2-9/8 || ambitonal ||
| | Transversal
|| 6 || 0-3-4 || 1-11/6-9/8 || rastmic ||
| | Type
|| 7 || 0-1-5 || 1-11/9-11/8 || utonal ||
|-
|| 8 || 0-2-5 || 1-3/2-11/8 || otonal ||
| | 1
|| 9 || 0-3-5 || 1-11/6-11/8 || utonal ||
| | 0-1-2
|| 10 || 0-4-5 || 1-9/8-11/8 || otonal ||
| | 1-11/9-3/2
|| 11 || 0-3-8 || 1-11/6-14/11 || hemimin ||
| | rastmic
|| 12 || 0-4-8 || 1-9/8-14/11 || pentacircle ||
|-
|| 13 || 0-5-8 || 1-11/8-14/11 || hemimin ||
| | 2
|| 14 || 0-1-9 || 1-11/9-14/9 || otonal ||
| | 0-1-3
|| 15 || 0-4-9 || 1-9/8-14/9 || pentacircle ||
| | 1-11/9-11/6
|| 16 || 0-5-9 || 1-11/8-14/9 || pentacircle ||
| | utonal
|| 17 || 0-8-9 || 1-14/11-14/9 || utonal ||
|-
|| 18 || 0-2-11 || 1-3/2-7/6 || otonal ||
| | 3
|| 19 || 0-3-11 || 1-11/6-7/6 || otonal ||
| | 0-2-3
|| 20 || 0-8-11 || 1-14/11-7/6 || utonal ||
| | 1-3/2-11/6
|| 21 || 0-9-11 || 1-14/9-7/6 || utonal ||
| | otonal
|| 22 || 0-1-12 || 1-11/9-10/7 || swetismic ||
|-
|| 23 || 0-3-12 || 1-11/6-10/7 || swetismic ||
| | 4
|| 24 || 0-4-12 || 1-9/8-10/7 || werckismic ||
| | 0-1-4
|| 25 || 0-8-12 || 1-14/11-10/7 || werckismic ||
| | 1-11/9-9/8
|| 26 || 0-9-12 || 1-14/9-10/7 || swetismic ||
| | rastmic
|| 27 || 0-11-12 || 1-7/6-10/7 || swetismic ||
|-
|| 28 || 0-1-13 || 1-11/9-7/4 || werckismic ||
| | 5
|| 29 || 0-2-13 || 1-3/2-7/4 || otonal ||
| | 0-2-4
|| 30 || 0-4-13 || 1-9/8-7/4 || otonal ||
| | 1-3/2-9/8
|| 31 || 0-5-13 || 1-11/8-7/4 || otonal ||
| | ambitonal
|| 32 || 0-8-13 || 1-14/11-7/4 || utonal ||
|-
|| 33 || 0-9-13 || 1-14/9-7/4 || utonal ||
| | 6
|| 34 || 0-11-13 || 1-7/6-7/4 || utonal ||
| | 0-3-4
|| 35 || 0-12-13 || 1-10/7-7/4 || werckismic ||
| | 1-11/6-9/8
|| 36 || 0-8-20 || 1-14/11-20/11 || otonal ||
| | rastmic
|| 37 || 0-9-20 || 1-14/9-20/11 || swetismic ||
|-
|| 38 || 0-11-20 || 1-7/6-20/11 || swetismic ||
| | 7
|| 39 || 0-12-20 || 1-10/7-20/11 || utonal ||
| | 0-1-5
|| 40 || 0-1-21 || 1-11/9-10/9 || otonal ||
| | 1-11/9-11/8
|| 41 || 0-8-21 || 1-14/11-10/9 || werckismic ||
| | utonal
|| 42 || 0-9-21 || 1-14/9-10/9 || otonal ||
|-
|| 43 || 0-12-21 || 1-10/7-10/9 || utonal ||
| | 8
|| 44 || 0-13-21 || 1-7/4-10/9 || werckismic ||
| | 0-2-5
|| 45 || 0-20-21 || 1-20/11-10/9 || utonal ||
| | 1-3/2-11/8
|| 46 || 0-2-23 || 1-3/2-5/3 || otonal ||
| | otonal
|| 47 || 0-3-23 || 1-11/6-5/3 || otonal ||
|-
|| 48 || 0-11-23 || 1-7/6-5/3 || otonal ||
| | 9
|| 49 || 0-12-23 || 1-10/7-5/3 || utonal ||
| | 0-3-5
|| 50 || 0-20-23 || 1-20/11-5/3 || utonal ||
| | 1-11/6-11/8
|| 51 || 0-21-23 || 1-10/9-5/3 || utonal ||
| | utonal
|| 52 || 0-2-25 || 1-3/2-5/4 || otonal ||
|-
|| 53 || 0-4-25 || 1-9/8-5/4 || otonal ||
| | 10
|| 54 || 0-5-25 || 1-11/8-5/4 || otonal ||
| | 0-4-5
|| 55 || 0-12-25 || 1-10/7-5/4 || utonal ||
| | 1-9/8-11/8
|| 56 || 0-13-25 || 1-7/4-5/4 || otonal ||
| | otonal
|| 57 || 0-20-25 || 1-20/11-5/4 || utonal ||
|-
|| 58 || 0-21-25 || 1-10/9-5/4 || utonal ||
| | 11
|| 59 || 0-23-25 || 1-5/3-5/4 || utonal ||
| | 0-3-8
| | 1-11/6-14/11
| | hemimin
|-
| | 12
| | 0-4-8
| | 1-9/8-14/11
| | pentacircle
|-
| | 13
| | 0-5-8
| | 1-11/8-14/11
| | hemimin
|-
| | 14
| | 0-1-9
| | 1-11/9-14/9
| | otonal
|-
| | 15
| | 0-4-9
| | 1-9/8-14/9
| | pentacircle
|-
| | 16
| | 0-5-9
| | 1-11/8-14/9
| | pentacircle
|-
| | 17
| | 0-8-9
| | 1-14/11-14/9
| | utonal
|-
| | 18
| | 0-2-11
| | 1-3/2-7/6
| | otonal
|-
| | 19
| | 0-3-11
| | 1-11/6-7/6
| | otonal
|-
| | 20
| | 0-8-11
| | 1-14/11-7/6
| | utonal
|-
| | 21
| | 0-9-11
| | 1-14/9-7/6
| | utonal
|-
| | 22
| | 0-1-12
| | 1-11/9-10/7
| | swetismic
|-
| | 23
| | 0-3-12
| | 1-11/6-10/7
| | swetismic
|-
| | 24
| | 0-4-12
| | 1-9/8-10/7
| | werckismic
|-
| | 25
| | 0-8-12
| | 1-14/11-10/7
| | werckismic
|-
| | 26
| | 0-9-12
| | 1-14/9-10/7
| | swetismic
|-
| | 27
| | 0-11-12
| | 1-7/6-10/7
| | swetismic
|-
| | 28
| | 0-1-13
| | 1-11/9-7/4
| | werckismic
|-
| | 29
| | 0-2-13
| | 1-3/2-7/4
| | otonal
|-
| | 30
| | 0-4-13
| | 1-9/8-7/4
| | otonal
|-
| | 31
| | 0-5-13
| | 1-11/8-7/4
| | otonal
|-
| | 32
| | 0-8-13
| | 1-14/11-7/4
| | utonal
|-
| | 33
| | 0-9-13
| | 1-14/9-7/4
| | utonal
|-
| | 34
| | 0-11-13
| | 1-7/6-7/4
| | utonal
|-
| | 35
| | 0-12-13
| | 1-10/7-7/4
| | werckismic
|-
| | 36
| | 0-8-20
| | 1-14/11-20/11
| | otonal
|-
| | 37
| | 0-9-20
| | 1-14/9-20/11
| | swetismic
|-
| | 38
| | 0-11-20
| | 1-7/6-20/11
| | swetismic
|-
| | 39
| | 0-12-20
| | 1-10/7-20/11
| | utonal
|-
| | 40
| | 0-1-21
| | 1-11/9-10/9
| | otonal
|-
| | 41
| | 0-8-21
| | 1-14/11-10/9
| | werckismic
|-
| | 42
| | 0-9-21
| | 1-14/9-10/9
| | otonal
|-
| | 43
| | 0-12-21
| | 1-10/7-10/9
| | utonal
|-
| | 44
| | 0-13-21
| | 1-7/4-10/9
| | werckismic
|-
| | 45
| | 0-20-21
| | 1-20/11-10/9
| | utonal
|-
| | 46
| | 0-2-23
| | 1-3/2-5/3
| | otonal
|-
| | 47
| | 0-3-23
| | 1-11/6-5/3
| | otonal
|-
| | 48
| | 0-11-23
| | 1-7/6-5/3
| | otonal
|-
| | 49
| | 0-12-23
| | 1-10/7-5/3
| | utonal
|-
| | 50
| | 0-20-23
| | 1-20/11-5/3
| | utonal
|-
| | 51
| | 0-21-23
| | 1-10/9-5/3
| | utonal
|-
| | 52
| | 0-2-25
| | 1-3/2-5/4
| | otonal
|-
| | 53
| | 0-4-25
| | 1-9/8-5/4
| | otonal
|-
| | 54
| | 0-5-25
| | 1-11/8-5/4
| | otonal
|-
| | 55
| | 0-12-25
| | 1-10/7-5/4
| | utonal
|-
| | 56
| | 0-13-25
| | 1-7/4-5/4
| | otonal
|-
| | 57
| | 0-20-25
| | 1-20/11-5/4
| | utonal
|-
| | 58
| | 0-21-25
| | 1-10/9-5/4
| | utonal
|-
| | 59
| | 0-23-25
| | 1-5/3-5/4
| | utonal
|}


=Tetrads=
=Tetrads=
|| Number || Chord || Transversal || Type ||
 
|| 1 || 0-1-2-3 || 1-11/9-3/2-11/6 || rastmic ||
{| class="wikitable"
|| 2 || 0-1-2-4 || 1-11/9-3/2-9/8 || rastmic ||
|-
|| 3 || 0-1-3-4 || 1-11/9-11/6-9/8 || rastmic ||
| | Number
|| 4 || 0-2-3-4 || 1-3/2-11/6-9/8 || rastmic ||
| | Chord
|| 5 || 0-1-2-5 || 1-11/9-3/2-11/8 || rastmic ||
| | Transversal
|| 6 || 0-1-3-5 || 1-11/9-11/6-11/8 || utonal ||
| | Type
|| 7 || 0-2-3-5 || 1-3/2-11/6-11/8 || ambitonal ||
|-
|| 8 || 0-1-4-5 || 1-11/9-9/8-11/8 || rastmic ||
| | 1
|| 9 || 0-2-4-5 || 1-3/2-9/8-11/8 || otonal ||
| | 0-1-2-3
|| 10 || 0-3-4-5 || 1-11/6-9/8-11/8 || rastmic ||
| | 1-11/9-3/2-11/6
|| 11 || 0-3-4-8 || 1-11/6-9/8-14/11 || nofives ||
| | rastmic
|| 12 || 0-3-5-8 || 1-11/6-11/8-14/11 || hemimin ||
|-
|| 13 || 0-4-5-8 || 1-9/8-11/8-14/11 || nofives ||
| | 2
|| 14 || 0-1-4-9 || 1-11/9-9/8-14/9 || nofives ||
| | 0-1-2-4
|| 15 || 0-1-5-9 || 1-11/9-11/8-14/9 || pentacircle ||
| | 1-11/9-3/2-9/8
|| 16 || 0-4-5-9 || 1-9/8-11/8-14/9 || pentacircle ||
| | rastmic
|| 17 || 0-4-8-9 || 1-9/8-14/11-14/9 || pentacircle ||
|-
|| 18 || 0-5-8-9 || 1-11/8-14/11-14/9 || nofives ||
| | 3
|| 19 || 0-2-3-11 || 1-3/2-11/6-7/6 || otonal ||
| | 0-1-3-4
|| 20 || 0-3-8-11 || 1-11/6-14/11-7/6 || hemimin ||
| | 1-11/9-11/6-9/8
|| 21 || 0-8-9-11 || 1-14/11-14/9-7/6 || utonal ||
| | rastmic
|| 22 || 0-1-3-12 || 1-11/9-11/6-10/7 || swetismic ||
|-
|| 23 || 0-1-4-12 || 1-11/9-9/8-10/7 || jove ||
| | 4
|| 24 || 0-3-4-12 || 1-11/6-9/8-10/7 || jove ||
| | 0-2-3-4
|| 25 || 0-3-8-12 || 1-11/6-14/11-10/7 || hemififths ||
| | 1-3/2-11/6-9/8
|| 26 || 0-4-8-12 || 1-9/8-14/11-10/7 || pele ||
| | rastmic
|| 27 || 0-1-9-12 || 1-11/9-14/9-10/7 || swetismic ||
|-
|| 28 || 0-4-9-12 || 1-9/8-14/9-10/7 || hemififths ||
| | 5
|| 29 || 0-8-9-12 || 1-14/11-14/9-10/7 || jove ||
| | 0-1-2-5
|| 30 || 0-3-11-12 || 1-11/6-7/6-10/7 || swetismic ||
| | 1-11/9-3/2-11/8
|| 31 || 0-8-11-12 || 1-14/11-7/6-10/7 || jove ||
| | rastmic
|| 32 || 0-9-11-12 || 1-14/9-7/6-10/7 || swetismic ||
|-
|| 33 || 0-1-2-13 || 1-11/9-3/2-7/4 || jove ||
| | 6
|| 34 || 0-1-4-13 || 1-11/9-9/8-7/4 || jove ||
| | 0-1-3-5
|| 35 || 0-2-4-13 || 1-3/2-9/8-7/4 || otonal ||
| | 1-11/9-11/6-11/8
|| 36 || 0-1-5-13 || 1-11/9-11/8-7/4 || werckismic ||
| | utonal
|| 37 || 0-2-5-13 || 1-3/2-11/8-7/4 || otonal ||
|-
|| 38 || 0-4-5-13 || 1-9/8-11/8-7/4 || otonal ||
| | 7
|| 39 || 0-4-8-13 || 1-9/8-14/11-7/4 || pentacircle ||
| | 0-2-3-5
|| 40 || 0-5-8-13 || 1-11/8-14/11-7/4 || hemimin ||
| | 1-3/2-11/6-11/8
|| 41 || 0-1-9-13 || 1-11/9-14/9-7/4 || werckismic ||
| | ambitonal
|| 42 || 0-4-9-13 || 1-9/8-14/9-7/4 || pentacircle ||
|-
|| 43 || 0-5-9-13 || 1-11/8-14/9-7/4 || pentacircle ||
| | 8
|| 44 || 0-8-9-13 || 1-14/11-14/9-7/4 || utonal ||
| | 0-1-4-5
|| 45 || 0-2-11-13 || 1-3/2-7/6-7/4 || ambitonal ||
| | 1-11/9-9/8-11/8
|| 46 || 0-8-11-13 || 1-14/11-7/6-7/4 || utonal ||
| | rastmic
|| 47 || 0-9-11-13 || 1-14/9-7/6-7/4 || utonal ||
|-
|| 48 || 0-1-12-13 || 1-11/9-10/7-7/4 || jove ||
| | 9
|| 49 || 0-4-12-13 || 1-9/8-10/7-7/4 || werckismic ||
| | 0-2-4-5
|| 50 || 0-8-12-13 || 1-14/11-10/7-7/4 || werckismic ||
| | 1-3/2-9/8-11/8
|| 51 || 0-9-12-13 || 1-14/9-10/7-7/4 || jove ||
| | otonal
|| 52 || 0-11-12-13 || 1-7/6-10/7-7/4 || jove ||
|-
|| 53 || 0-8-9-20 || 1-14/11-14/9-20/11 || swetismic ||
| | 10
|| 54 || 0-8-11-20 || 1-14/11-7/6-20/11 || swetismic ||
| | 0-3-4-5
|| 55 || 0-9-11-20 || 1-14/9-7/6-20/11 || swetismic ||
| | 1-11/6-9/8-11/8
|| 56 || 0-8-12-20 || 1-14/11-10/7-20/11 || werckismic ||
| | rastmic
|| 57 || 0-9-12-20 || 1-14/9-10/7-20/11 || swetismic ||
|-
|| 58 || 0-11-12-20 || 1-7/6-10/7-20/11 || swetismic ||
| | 11
|| 59 || 0-1-9-21 || 1-11/9-14/9-10/9 || otonal ||
| | 0-3-4-8
|| 60 || 0-8-9-21 || 1-14/11-14/9-10/9 || werckismic ||
| | 1-11/6-9/8-14/11
|| 61 || 0-1-12-21 || 1-11/9-10/7-10/9 || swetismic ||
| | nofives
|| 62 || 0-8-12-21 || 1-14/11-10/7-10/9 || werckismic ||
|-
|| 63 || 0-9-12-21 || 1-14/9-10/7-10/9 || swetismic ||
| | 12
|| 64 || 0-1-13-21 || 1-11/9-7/4-10/9 || werckismic ||
| | 0-3-5-8
|| 65 || 0-8-13-21 || 1-14/11-7/4-10/9 || werckismic ||
| | 1-11/6-11/8-14/11
|| 66 || 0-9-13-21 || 1-14/9-7/4-10/9 || werckismic ||
| | hemimin
|| 67 || 0-12-13-21 || 1-10/7-7/4-10/9 || werckismic ||
|-
|| 68 || 0-8-20-21 || 1-14/11-20/11-10/9 || werckismic ||
| | 13
|| 69 || 0-9-20-21 || 1-14/9-20/11-10/9 || swetismic ||
| | 0-4-5-8
|| 70 || 0-12-20-21 || 1-10/7-20/11-10/9 || utonal ||
| | 1-9/8-11/8-14/11
|| 71 || 0-2-3-23 || 1-3/2-11/6-5/3 || otonal ||
| | nofives
|| 72 || 0-2-11-23 || 1-3/2-7/6-5/3 || otonal ||
|-
|| 73 || 0-3-11-23 || 1-11/6-7/6-5/3 || otonal ||
| | 14
|| 74 || 0-3-12-23 || 1-11/6-10/7-5/3 || swetismic ||
| | 0-1-4-9
|| 75 || 0-11-12-23 || 1-7/6-10/7-5/3 || swetismic ||
| | 1-11/9-9/8-14/9
|| 76 || 0-11-20-23 || 1-7/6-20/11-5/3 || swetismic ||
| | nofives
|| 77 || 0-12-20-23 || 1-10/7-20/11-5/3 || utonal ||
|-
|| 78 || 0-12-21-23 || 1-10/7-10/9-5/3 || utonal ||
| | 15
|| 79 || 0-20-21-23 || 1-20/11-10/9-5/3 || utonal ||
| | 0-1-5-9
|| 80 || 0-2-4-25 || 1-3/2-9/8-5/4 || otonal ||
| | 1-11/9-11/8-14/9
|| 81 || 0-2-5-25 || 1-3/2-11/8-5/4 || otonal ||
| | pentacircle
|| 82 || 0-4-5-25 || 1-9/8-11/8-5/4 || otonal ||
|-
|| 83 || 0-4-12-25 || 1-9/8-10/7-5/4 || werckismic ||
| | 16
|| 84 || 0-2-13-25 || 1-3/2-7/4-5/4 || otonal ||
| | 0-4-5-9
|| 85 || 0-4-13-25 || 1-9/8-7/4-5/4 || otonal ||
| | 1-9/8-11/8-14/9
|| 86 || 0-5-13-25 || 1-11/8-7/4-5/4 || otonal ||
| | pentacircle
|| 87 || 0-12-13-25 || 1-10/7-7/4-5/4 || werckismic ||
|-
|| 88 || 0-12-20-25 || 1-10/7-20/11-5/4 || utonal ||
| | 17
|| 89 || 0-12-21-25 || 1-10/7-10/9-5/4 || utonal ||
| | 0-4-8-9
|| 90 || 0-13-21-25 || 1-7/4-10/9-5/4 || werckismic ||
| | 1-9/8-14/11-14/9
|| 91 || 0-20-21-25 || 1-20/11-10/9-5/4 || utonal ||
| | pentacircle
|| 92 || 0-2-23-25 || 1-3/2-5/3-5/4 || ambitonal ||
|-
|| 93 || 0-12-23-25 || 1-10/7-5/3-5/4 || utonal ||
| | 18
|| 94 || 0-20-23-25 || 1-20/11-5/3-5/4 || utonal ||
| | 0-5-8-9
|| 95 || 0-21-23-25 || 1-10/9-5/3-5/4 || utonal ||
| | 1-11/8-14/11-14/9
| | nofives
|-
| | 19
| | 0-2-3-11
| | 1-3/2-11/6-7/6
| | otonal
|-
| | 20
| | 0-3-8-11
| | 1-11/6-14/11-7/6
| | hemimin
|-
| | 21
| | 0-8-9-11
| | 1-14/11-14/9-7/6
| | utonal
|-
| | 22
| | 0-1-3-12
| | 1-11/9-11/6-10/7
| | swetismic
|-
| | 23
| | 0-1-4-12
| | 1-11/9-9/8-10/7
| | jove
|-
| | 24
| | 0-3-4-12
| | 1-11/6-9/8-10/7
| | jove
|-
| | 25
| | 0-3-8-12
| | 1-11/6-14/11-10/7
| | hemififths
|-
| | 26
| | 0-4-8-12
| | 1-9/8-14/11-10/7
| | pele
|-
| | 27
| | 0-1-9-12
| | 1-11/9-14/9-10/7
| | swetismic
|-
| | 28
| | 0-4-9-12
| | 1-9/8-14/9-10/7
| | hemififths
|-
| | 29
| | 0-8-9-12
| | 1-14/11-14/9-10/7
| | jove
|-
| | 30
| | 0-3-11-12
| | 1-11/6-7/6-10/7
| | swetismic
|-
| | 31
| | 0-8-11-12
| | 1-14/11-7/6-10/7
| | jove
|-
| | 32
| | 0-9-11-12
| | 1-14/9-7/6-10/7
| | swetismic
|-
| | 33
| | 0-1-2-13
| | 1-11/9-3/2-7/4
| | jove
|-
| | 34
| | 0-1-4-13
| | 1-11/9-9/8-7/4
| | jove
|-
| | 35
| | 0-2-4-13
| | 1-3/2-9/8-7/4
| | otonal
|-
| | 36
| | 0-1-5-13
| | 1-11/9-11/8-7/4
| | werckismic
|-
| | 37
| | 0-2-5-13
| | 1-3/2-11/8-7/4
| | otonal
|-
| | 38
| | 0-4-5-13
| | 1-9/8-11/8-7/4
| | otonal
|-
| | 39
| | 0-4-8-13
| | 1-9/8-14/11-7/4
| | pentacircle
|-
| | 40
| | 0-5-8-13
| | 1-11/8-14/11-7/4
| | hemimin
|-
| | 41
| | 0-1-9-13
| | 1-11/9-14/9-7/4
| | werckismic
|-
| | 42
| | 0-4-9-13
| | 1-9/8-14/9-7/4
| | pentacircle
|-
| | 43
| | 0-5-9-13
| | 1-11/8-14/9-7/4
| | pentacircle
|-
| | 44
| | 0-8-9-13
| | 1-14/11-14/9-7/4
| | utonal
|-
| | 45
| | 0-2-11-13
| | 1-3/2-7/6-7/4
| | ambitonal
|-
| | 46
| | 0-8-11-13
| | 1-14/11-7/6-7/4
| | utonal
|-
| | 47
| | 0-9-11-13
| | 1-14/9-7/6-7/4
| | utonal
|-
| | 48
| | 0-1-12-13
| | 1-11/9-10/7-7/4
| | jove
|-
| | 49
| | 0-4-12-13
| | 1-9/8-10/7-7/4
| | werckismic
|-
| | 50
| | 0-8-12-13
| | 1-14/11-10/7-7/4
| | werckismic
|-
| | 51
| | 0-9-12-13
| | 1-14/9-10/7-7/4
| | jove
|-
| | 52
| | 0-11-12-13
| | 1-7/6-10/7-7/4
| | jove
|-
| | 53
| | 0-8-9-20
| | 1-14/11-14/9-20/11
| | swetismic
|-
| | 54
| | 0-8-11-20
| | 1-14/11-7/6-20/11
| | swetismic
|-
| | 55
| | 0-9-11-20
| | 1-14/9-7/6-20/11
| | swetismic
|-
| | 56
| | 0-8-12-20
| | 1-14/11-10/7-20/11
| | werckismic
|-
| | 57
| | 0-9-12-20
| | 1-14/9-10/7-20/11
| | swetismic
|-
| | 58
| | 0-11-12-20
| | 1-7/6-10/7-20/11
| | swetismic
|-
| | 59
| | 0-1-9-21
| | 1-11/9-14/9-10/9
| | otonal
|-
| | 60
| | 0-8-9-21
| | 1-14/11-14/9-10/9
| | werckismic
|-
| | 61
| | 0-1-12-21
| | 1-11/9-10/7-10/9
| | swetismic
|-
| | 62
| | 0-8-12-21
| | 1-14/11-10/7-10/9
| | werckismic
|-
| | 63
| | 0-9-12-21
| | 1-14/9-10/7-10/9
| | swetismic
|-
| | 64
| | 0-1-13-21
| | 1-11/9-7/4-10/9
| | werckismic
|-
| | 65
| | 0-8-13-21
| | 1-14/11-7/4-10/9
| | werckismic
|-
| | 66
| | 0-9-13-21
| | 1-14/9-7/4-10/9
| | werckismic
|-
| | 67
| | 0-12-13-21
| | 1-10/7-7/4-10/9
| | werckismic
|-
| | 68
| | 0-8-20-21
| | 1-14/11-20/11-10/9
| | werckismic
|-
| | 69
| | 0-9-20-21
| | 1-14/9-20/11-10/9
| | swetismic
|-
| | 70
| | 0-12-20-21
| | 1-10/7-20/11-10/9
| | utonal
|-
| | 71
| | 0-2-3-23
| | 1-3/2-11/6-5/3
| | otonal
|-
| | 72
| | 0-2-11-23
| | 1-3/2-7/6-5/3
| | otonal
|-
| | 73
| | 0-3-11-23
| | 1-11/6-7/6-5/3
| | otonal
|-
| | 74
| | 0-3-12-23
| | 1-11/6-10/7-5/3
| | swetismic
|-
| | 75
| | 0-11-12-23
| | 1-7/6-10/7-5/3
| | swetismic
|-
| | 76
| | 0-11-20-23
| | 1-7/6-20/11-5/3
| | swetismic
|-
| | 77
| | 0-12-20-23
| | 1-10/7-20/11-5/3
| | utonal
|-
| | 78
| | 0-12-21-23
| | 1-10/7-10/9-5/3
| | utonal
|-
| | 79
| | 0-20-21-23
| | 1-20/11-10/9-5/3
| | utonal
|-
| | 80
| | 0-2-4-25
| | 1-3/2-9/8-5/4
| | otonal
|-
| | 81
| | 0-2-5-25
| | 1-3/2-11/8-5/4
| | otonal
|-
| | 82
| | 0-4-5-25
| | 1-9/8-11/8-5/4
| | otonal
|-
| | 83
| | 0-4-12-25
| | 1-9/8-10/7-5/4
| | werckismic
|-
| | 84
| | 0-2-13-25
| | 1-3/2-7/4-5/4
| | otonal
|-
| | 85
| | 0-4-13-25
| | 1-9/8-7/4-5/4
| | otonal
|-
| | 86
| | 0-5-13-25
| | 1-11/8-7/4-5/4
| | otonal
|-
| | 87
| | 0-12-13-25
| | 1-10/7-7/4-5/4
| | werckismic
|-
| | 88
| | 0-12-20-25
| | 1-10/7-20/11-5/4
| | utonal
|-
| | 89
| | 0-12-21-25
| | 1-10/7-10/9-5/4
| | utonal
|-
| | 90
| | 0-13-21-25
| | 1-7/4-10/9-5/4
| | werckismic
|-
| | 91
| | 0-20-21-25
| | 1-20/11-10/9-5/4
| | utonal
|-
| | 92
| | 0-2-23-25
| | 1-3/2-5/3-5/4
| | ambitonal
|-
| | 93
| | 0-12-23-25
| | 1-10/7-5/3-5/4
| | utonal
|-
| | 94
| | 0-20-23-25
| | 1-20/11-5/3-5/4
| | utonal
|-
| | 95
| | 0-21-23-25
| | 1-10/9-5/3-5/4
| | utonal
|}


=Pentads=
=Pentads=
|| Number || Chord || Transversal || Type ||
 
|| 1 || 0-1-2-3-4 || 1-11/9-3/2-11/6-9/8 || rastmic ||
{| class="wikitable"
|| 2 || 0-1-2-3-5 || 1-11/9-3/2-11/6-11/8 || rastmic ||
|-
|| 3 || 0-1-2-4-5 || 1-11/9-3/2-9/8-11/8 || rastmic ||
| | Number
|| 4 || 0-1-3-4-5 || 1-11/9-11/6-9/8-11/8 || rastmic ||
| | Chord
|| 5 || 0-2-3-4-5 || 1-3/2-11/6-9/8-11/8 || rastmic ||
| | Transversal
|| 6 || 0-3-4-5-8 || 1-11/6-9/8-11/8-14/11 || nofives ||
| | Type
|| 7 || 0-1-4-5-9 || 1-11/9-9/8-11/8-14/9 || nofives ||
|-
|| 8 || 0-4-5-8-9 || 1-9/8-11/8-14/11-14/9 || nofives ||
| | 1
|| 9 || 0-1-3-4-12 || 1-11/9-11/6-9/8-10/7 || jove ||
| | 0-1-2-3-4
|| 10 || 0-3-4-8-12 || 1-11/6-9/8-14/11-10/7 || hemififths ||
| | 1-11/9-3/2-11/6-9/8
|| 11 || 0-1-4-9-12 || 1-11/9-9/8-14/9-10/7 || hemififths ||
| | rastmic
|| 12 || 0-4-8-9-12 || 1-9/8-14/11-14/9-10/7 || hemififths ||
|-
|| 13 || 0-3-8-11-12 || 1-11/6-14/11-7/6-10/7 || hemififths ||
| | 2
|| 14 || 0-8-9-11-12 || 1-14/11-14/9-7/6-10/7 || jove ||
| | 0-1-2-3-5
|| 15 || 0-1-2-4-13 || 1-11/9-3/2-9/8-7/4 || jove ||
| | 1-11/9-3/2-11/6-11/8
|| 16 || 0-1-2-5-13 || 1-11/9-3/2-11/8-7/4 || jove ||
| | rastmic
|| 17 || 0-1-4-5-13 || 1-11/9-9/8-11/8-7/4 || jove ||
|-
|| 18 || 0-2-4-5-13 || 1-3/2-9/8-11/8-7/4 || otonal ||
| | 3
|| 19 || 0-4-5-8-13 || 1-9/8-11/8-14/11-7/4 || nofives ||
| | 0-1-2-4-5
|| 20 || 0-1-4-9-13 || 1-11/9-9/8-14/9-7/4 || hemififths ||
| | 1-11/9-3/2-9/8-11/8
|| 21 || 0-1-5-9-13 || 1-11/9-11/8-14/9-7/4 || pele ||
| | rastmic
|| 22 || 0-4-5-9-13 || 1-9/8-11/8-14/9-7/4 || pentacircle ||
|-
|| 23 || 0-4-8-9-13 || 1-9/8-14/11-14/9-7/4 || pentacircle ||
| | 4
|| 24 || 0-5-8-9-13 || 1-11/8-14/11-14/9-7/4 || nofives ||
| | 0-1-3-4-5
|| 25 || 0-8-9-11-13 || 1-14/11-14/9-7/6-7/4 || utonal ||
| | 1-11/9-11/6-9/8-11/8
|| 26 || 0-1-4-12-13 || 1-11/9-9/8-10/7-7/4 || jove ||
| | rastmic
|| 27 || 0-4-8-12-13 || 1-9/8-14/11-10/7-7/4 || pele ||
|-
|| 28 || 0-1-9-12-13 || 1-11/9-14/9-10/7-7/4 || jove ||
| | 5
|| 29 || 0-4-9-12-13 || 1-9/8-14/9-10/7-7/4 || hemififths ||
| | 0-2-3-4-5
|| 30 || 0-8-9-12-13 || 1-14/11-14/9-10/7-7/4 || jove ||
| | 1-3/2-11/6-9/8-11/8
|| 31 || 0-8-11-12-13 || 1-14/11-7/6-10/7-7/4 || jove ||
| | rastmic
|| 32 || 0-9-11-12-13 || 1-14/9-7/6-10/7-7/4 || jove ||
|-
|| 33 || 0-8-9-11-20 || 1-14/11-14/9-7/6-20/11 || swetismic ||
| | 6
|| 34 || 0-8-9-12-20 || 1-14/11-14/9-10/7-20/11 || jove ||
| | 0-3-4-5-8
|| 35 || 0-8-11-12-20 || 1-14/11-7/6-10/7-20/11 || jove ||
| | 1-11/6-9/8-11/8-14/11
|| 36 || 0-9-11-12-20 || 1-14/9-7/6-10/7-20/11 || swetismic ||
| | nofives
|| 37 || 0-1-9-12-21 || 1-11/9-14/9-10/7-10/9 || swetismic ||
|-
|| 38 || 0-8-9-12-21 || 1-14/11-14/9-10/7-10/9 || jove ||
| | 7
|| 39 || 0-1-9-13-21 || 1-11/9-14/9-7/4-10/9 || werckismic ||
| | 0-1-4-5-9
|| 40 || 0-8-9-13-21 || 1-14/11-14/9-7/4-10/9 || werckismic ||
| | 1-11/9-9/8-11/8-14/9
|| 41 || 0-1-12-13-21 || 1-11/9-10/7-7/4-10/9 || jove ||
| | nofives
|| 42 || 0-8-12-13-21 || 1-14/11-10/7-7/4-10/9 || werckismic ||
|-
|| 43 || 0-9-12-13-21 || 1-14/9-10/7-7/4-10/9 || jove ||
| | 8
|| 44 || 0-8-9-20-21 || 1-14/11-14/9-20/11-10/9 || jove ||
| | 0-4-5-8-9
|| 45 || 0-8-12-20-21 || 1-14/11-10/7-20/11-10/9 || werckismic ||
| | 1-9/8-11/8-14/11-14/9
|| 46 || 0-9-12-20-21 || 1-14/9-10/7-20/11-10/9 || swetismic ||
| | nofives
|| 47 || 0-2-3-11-23 || 1-3/2-11/6-7/6-5/3 || otonal ||
|-
|| 48 || 0-3-11-12-23 || 1-11/6-7/6-10/7-5/3 || swetismic ||
| | 9
|| 49 || 0-11-12-20-23 || 1-7/6-10/7-20/11-5/3 || swetismic ||
| | 0-1-3-4-12
|| 50 || 0-12-20-21-23 || 1-10/7-20/11-10/9-5/3 || utonal ||
| | 1-11/9-11/6-9/8-10/7
|| 51 || 0-2-4-5-25 || 1-3/2-9/8-11/8-5/4 || otonal ||
| | jove
|| 52 || 0-2-4-13-25 || 1-3/2-9/8-7/4-5/4 || otonal ||
|-
|| 53 || 0-2-5-13-25 || 1-3/2-11/8-7/4-5/4 || otonal ||
| | 10
|| 54 || 0-4-5-13-25 || 1-9/8-11/8-7/4-5/4 || otonal ||
| | 0-3-4-8-12
|| 55 || 0-4-12-13-25 || 1-9/8-10/7-7/4-5/4 || werckismic ||
| | 1-11/6-9/8-14/11-10/7
|| 56 || 0-12-13-21-25 || 1-10/7-7/4-10/9-5/4 || werckismic ||
| | hemififths
|| 57 || 0-12-20-21-25 || 1-10/7-20/11-10/9-5/4 || utonal ||
|-
|| 58 || 0-12-20-23-25 || 1-10/7-20/11-5/3-5/4 || utonal ||
| | 11
|| 59 || 0-12-21-23-25 || 1-10/7-10/9-5/3-5/4 || utonal ||
| | 0-1-4-9-12
|| 60 || 0-20-21-23-25 || 1-20/11-10/9-5/3-5/4 || utonal ||
| | 1-11/9-9/8-14/9-10/7
| | hemififths
|-
| | 12
| | 0-4-8-9-12
| | 1-9/8-14/11-14/9-10/7
| | hemififths
|-
| | 13
| | 0-3-8-11-12
| | 1-11/6-14/11-7/6-10/7
| | hemififths
|-
| | 14
| | 0-8-9-11-12
| | 1-14/11-14/9-7/6-10/7
| | jove
|-
| | 15
| | 0-1-2-4-13
| | 1-11/9-3/2-9/8-7/4
| | jove
|-
| | 16
| | 0-1-2-5-13
| | 1-11/9-3/2-11/8-7/4
| | jove
|-
| | 17
| | 0-1-4-5-13
| | 1-11/9-9/8-11/8-7/4
| | jove
|-
| | 18
| | 0-2-4-5-13
| | 1-3/2-9/8-11/8-7/4
| | otonal
|-
| | 19
| | 0-4-5-8-13
| | 1-9/8-11/8-14/11-7/4
| | nofives
|-
| | 20
| | 0-1-4-9-13
| | 1-11/9-9/8-14/9-7/4
| | hemififths
|-
| | 21
| | 0-1-5-9-13
| | 1-11/9-11/8-14/9-7/4
| | pele
|-
| | 22
| | 0-4-5-9-13
| | 1-9/8-11/8-14/9-7/4
| | pentacircle
|-
| | 23
| | 0-4-8-9-13
| | 1-9/8-14/11-14/9-7/4
| | pentacircle
|-
| | 24
| | 0-5-8-9-13
| | 1-11/8-14/11-14/9-7/4
| | nofives
|-
| | 25
| | 0-8-9-11-13
| | 1-14/11-14/9-7/6-7/4
| | utonal
|-
| | 26
| | 0-1-4-12-13
| | 1-11/9-9/8-10/7-7/4
| | jove
|-
| | 27
| | 0-4-8-12-13
| | 1-9/8-14/11-10/7-7/4
| | pele
|-
| | 28
| | 0-1-9-12-13
| | 1-11/9-14/9-10/7-7/4
| | jove
|-
| | 29
| | 0-4-9-12-13
| | 1-9/8-14/9-10/7-7/4
| | hemififths
|-
| | 30
| | 0-8-9-12-13
| | 1-14/11-14/9-10/7-7/4
| | jove
|-
| | 31
| | 0-8-11-12-13
| | 1-14/11-7/6-10/7-7/4
| | jove
|-
| | 32
| | 0-9-11-12-13
| | 1-14/9-7/6-10/7-7/4
| | jove
|-
| | 33
| | 0-8-9-11-20
| | 1-14/11-14/9-7/6-20/11
| | swetismic
|-
| | 34
| | 0-8-9-12-20
| | 1-14/11-14/9-10/7-20/11
| | jove
|-
| | 35
| | 0-8-11-12-20
| | 1-14/11-7/6-10/7-20/11
| | jove
|-
| | 36
| | 0-9-11-12-20
| | 1-14/9-7/6-10/7-20/11
| | swetismic
|-
| | 37
| | 0-1-9-12-21
| | 1-11/9-14/9-10/7-10/9
| | swetismic
|-
| | 38
| | 0-8-9-12-21
| | 1-14/11-14/9-10/7-10/9
| | jove
|-
| | 39
| | 0-1-9-13-21
| | 1-11/9-14/9-7/4-10/9
| | werckismic
|-
| | 40
| | 0-8-9-13-21
| | 1-14/11-14/9-7/4-10/9
| | werckismic
|-
| | 41
| | 0-1-12-13-21
| | 1-11/9-10/7-7/4-10/9
| | jove
|-
| | 42
| | 0-8-12-13-21
| | 1-14/11-10/7-7/4-10/9
| | werckismic
|-
| | 43
| | 0-9-12-13-21
| | 1-14/9-10/7-7/4-10/9
| | jove
|-
| | 44
| | 0-8-9-20-21
| | 1-14/11-14/9-20/11-10/9
| | jove
|-
| | 45
| | 0-8-12-20-21
| | 1-14/11-10/7-20/11-10/9
| | werckismic
|-
| | 46
| | 0-9-12-20-21
| | 1-14/9-10/7-20/11-10/9
| | swetismic
|-
| | 47
| | 0-2-3-11-23
| | 1-3/2-11/6-7/6-5/3
| | otonal
|-
| | 48
| | 0-3-11-12-23
| | 1-11/6-7/6-10/7-5/3
| | swetismic
|-
| | 49
| | 0-11-12-20-23
| | 1-7/6-10/7-20/11-5/3
| | swetismic
|-
| | 50
| | 0-12-20-21-23
| | 1-10/7-20/11-10/9-5/3
| | utonal
|-
| | 51
| | 0-2-4-5-25
| | 1-3/2-9/8-11/8-5/4
| | otonal
|-
| | 52
| | 0-2-4-13-25
| | 1-3/2-9/8-7/4-5/4
| | otonal
|-
| | 53
| | 0-2-5-13-25
| | 1-3/2-11/8-7/4-5/4
| | otonal
|-
| | 54
| | 0-4-5-13-25
| | 1-9/8-11/8-7/4-5/4
| | otonal
|-
| | 55
| | 0-4-12-13-25
| | 1-9/8-10/7-7/4-5/4
| | werckismic
|-
| | 56
| | 0-12-13-21-25
| | 1-10/7-7/4-10/9-5/4
| | werckismic
|-
| | 57
| | 0-12-20-21-25
| | 1-10/7-20/11-10/9-5/4
| | utonal
|-
| | 58
| | 0-12-20-23-25
| | 1-10/7-20/11-5/3-5/4
| | utonal
|-
| | 59
| | 0-12-21-23-25
| | 1-10/7-10/9-5/3-5/4
| | utonal
|-
| | 60
| | 0-20-21-23-25
| | 1-20/11-10/9-5/3-5/4
| | utonal
|}


=Hexads=
=Hexads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-1-2-3-4-5 || 1-11/9-3/2-11/6-9/8-11/8 || rastmic ||
|| 2 || 0-1-2-4-5-13 || 1-11/9-3/2-9/8-11/8-7/4 || jove ||
|| 3 || 0-1-4-5-9-13 || 1-11/9-9/8-11/8-14/9-7/4 || hemififths ||
|| 4 || 0-4-5-8-9-13 || 1-9/8-11/8-14/11-14/9-7/4 || nofives ||
|| 5 || 0-1-4-9-12-13 || 1-11/9-9/8-14/9-10/7-7/4 || hemififths ||
|| 6 || 0-4-8-9-12-13 || 1-9/8-14/11-14/9-10/7-7/4 || hemififths ||
|| 7 || 0-8-9-11-12-13 || 1-14/11-14/9-7/6-10/7-7/4 || jove ||
|| 8 || 0-8-9-11-12-20 || 1-14/11-14/9-7/6-10/7-20/11 || jove ||
|| 9 || 0-1-9-12-13-21 || 1-11/9-14/9-10/7-7/4-10/9 || jove ||
|| 10 || 0-8-9-12-13-21 || 1-14/11-14/9-10/7-7/4-10/9 || jove ||
|| 11 || 0-8-9-12-20-21 || 1-14/11-14/9-10/7-20/11-10/9 || jove ||
|| 12 || 0-2-4-5-13-25 || 1-3/2-9/8-11/8-7/4-5/4 || otonal ||
|| 13 || 0-12-20-21-23-25 || 1-10/7-20/11-10/9-5/3-5/4 || utonal ||
</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Chords of hemififths&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Below are listed the &lt;a class="wiki_link" href="/Dyadic%20chord"&gt;dyadic chords&lt;/a&gt; of 11-limit &lt;a class="wiki_link" href="/Breedsmic%20temperaments#Hemififths"&gt;hemififths temperament&lt;/a&gt;. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label &amp;quot;nofives&amp;quot; refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. &amp;quot;Nofives&amp;quot; refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled &amp;quot;hemififths&amp;quot;.&lt;br /&gt;
&lt;br /&gt;
A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Triads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Triads&lt;/h1&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-21-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-21-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Tetrads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Tetrads&lt;/h1&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-11/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/6-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/6-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-9/8-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-5-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-11/8-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-5-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/8-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-8-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-14/11-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-8-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-14/11-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-9/8-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-8-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-14/11-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pele&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-9-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/9-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-7/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-8-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-14/11-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-11-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-11-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-11-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-11-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/6-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-11-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;61&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-12-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-10/7-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;62&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-12-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-10/7-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;63&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-12-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-10/7-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;64&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;65&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;66&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;67&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;68&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;69&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;70&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-11-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/6-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;73&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-11-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-7/6-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;74&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-12-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-10/7-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;75&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-12-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-10/7-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;76&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-20-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-20/11-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;77&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;78&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-21-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-10/9-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;79&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-21-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-10/9-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;80&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;81&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-5-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;82&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;83&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-12-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-10/7-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;84&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;85&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;87&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;88&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;89&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-21-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-10/9-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;90&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-21-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-10/9-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;91&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-21-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-10/9-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;92&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;93&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;94&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;95&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-21-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Pentads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Pentads&lt;/h1&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-3-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-11/6-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-3-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-11/6-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/6-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-5-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-9/8-11/8-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-5-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-11/8-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-8-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-14/11-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3-4-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/6-9/8-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-8-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-9/8-14/11-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-9-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-14/9-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-9-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-14/9-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-8-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-14/11-7/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-4-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-9/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-8-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-14/11-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-5-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pele&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-8-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-14/11-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-11-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pele&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-9-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-11-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/6-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-11-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-11-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/6-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-11-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/6-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-11-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-12-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-10/7-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-12-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/7-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-12-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-10/7-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-12-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-10/7-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-12-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-10/7-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-12-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-10/7-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-12-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-10/7-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-11-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6-7/6-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-11-12-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-7/6-10/7-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-12-20-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-10/7-20/11-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-21-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-10/9-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-5-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-11/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-5-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/8-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-12-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-10/7-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-21-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-7/4-10/9-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-21-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-10/9-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-21-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-10/9-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-21-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-10/9-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Hexads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Hexads&lt;/h1&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-3-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-11/6-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-4-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-9/8-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-5-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-11/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-8-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-14/11-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-9-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-14/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-9-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-14/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-11-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/6-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-11-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/6-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-12-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-10/7-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-12-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/7-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-12-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/7-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-5-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-11/8-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-21-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-10/9-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
{| class="wikitable"
|-
| | Number
| | Chord
| | Transversal
| | Type
|-
| | 1
| | 0-1-2-3-4-5
| | 1-11/9-3/2-11/6-9/8-11/8
| | rastmic
|-
| | 2
| | 0-1-2-4-5-13
| | 1-11/9-3/2-9/8-11/8-7/4
| | jove
|-
| | 3
| | 0-1-4-5-9-13
| | 1-11/9-9/8-11/8-14/9-7/4
| | hemififths
|-
| | 4
| | 0-4-5-8-9-13
| | 1-9/8-11/8-14/11-14/9-7/4
| | nofives
|-
| | 5
| | 0-1-4-9-12-13
| | 1-11/9-9/8-14/9-10/7-7/4
| | hemififths
|-
| | 6
| | 0-4-8-9-12-13
| | 1-9/8-14/11-14/9-10/7-7/4
| | hemififths
|-
| | 7
| | 0-8-9-11-12-13
| | 1-14/11-14/9-7/6-10/7-7/4
| | jove
|-
| | 8
| | 0-8-9-11-12-20
| | 1-14/11-14/9-7/6-10/7-20/11
| | jove
|-
| | 9
| | 0-1-9-12-13-21
| | 1-11/9-14/9-10/7-7/4-10/9
| | jove
|-
| | 10
| | 0-8-9-12-13-21
| | 1-14/11-14/9-10/7-7/4-10/9
| | jove
|-
| | 11
| | 0-8-9-12-20-21
| | 1-14/11-14/9-10/7-20/11-10/9
| | jove
|-
| | 12
| | 0-2-4-5-13-25
| | 1-3/2-9/8-11/8-7/4-5/4
| | otonal
|-
| | 13
| | 0-12-20-21-23-25
| | 1-10/7-20/11-10/9-5/3-5/4
| | utonal
|}

Revision as of 00:00, 17 July 2018

Below are listed the dyadic chords of 11-limit hemififths temperament. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths".

A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.

Triads

Number Chord Transversal Type
1 0-1-2 1-11/9-3/2 rastmic
2 0-1-3 1-11/9-11/6 utonal
3 0-2-3 1-3/2-11/6 otonal
4 0-1-4 1-11/9-9/8 rastmic
5 0-2-4 1-3/2-9/8 ambitonal
6 0-3-4 1-11/6-9/8 rastmic
7 0-1-5 1-11/9-11/8 utonal
8 0-2-5 1-3/2-11/8 otonal
9 0-3-5 1-11/6-11/8 utonal
10 0-4-5 1-9/8-11/8 otonal
11 0-3-8 1-11/6-14/11 hemimin
12 0-4-8 1-9/8-14/11 pentacircle
13 0-5-8 1-11/8-14/11 hemimin
14 0-1-9 1-11/9-14/9 otonal
15 0-4-9 1-9/8-14/9 pentacircle
16 0-5-9 1-11/8-14/9 pentacircle
17 0-8-9 1-14/11-14/9 utonal
18 0-2-11 1-3/2-7/6 otonal
19 0-3-11 1-11/6-7/6 otonal
20 0-8-11 1-14/11-7/6 utonal
21 0-9-11 1-14/9-7/6 utonal
22 0-1-12 1-11/9-10/7 swetismic
23 0-3-12 1-11/6-10/7 swetismic
24 0-4-12 1-9/8-10/7 werckismic
25 0-8-12 1-14/11-10/7 werckismic
26 0-9-12 1-14/9-10/7 swetismic
27 0-11-12 1-7/6-10/7 swetismic
28 0-1-13 1-11/9-7/4 werckismic
29 0-2-13 1-3/2-7/4 otonal
30 0-4-13 1-9/8-7/4 otonal
31 0-5-13 1-11/8-7/4 otonal
32 0-8-13 1-14/11-7/4 utonal
33 0-9-13 1-14/9-7/4 utonal
34 0-11-13 1-7/6-7/4 utonal
35 0-12-13 1-10/7-7/4 werckismic
36 0-8-20 1-14/11-20/11 otonal
37 0-9-20 1-14/9-20/11 swetismic
38 0-11-20 1-7/6-20/11 swetismic
39 0-12-20 1-10/7-20/11 utonal
40 0-1-21 1-11/9-10/9 otonal
41 0-8-21 1-14/11-10/9 werckismic
42 0-9-21 1-14/9-10/9 otonal
43 0-12-21 1-10/7-10/9 utonal
44 0-13-21 1-7/4-10/9 werckismic
45 0-20-21 1-20/11-10/9 utonal
46 0-2-23 1-3/2-5/3 otonal
47 0-3-23 1-11/6-5/3 otonal
48 0-11-23 1-7/6-5/3 otonal
49 0-12-23 1-10/7-5/3 utonal
50 0-20-23 1-20/11-5/3 utonal
51 0-21-23 1-10/9-5/3 utonal
52 0-2-25 1-3/2-5/4 otonal
53 0-4-25 1-9/8-5/4 otonal
54 0-5-25 1-11/8-5/4 otonal
55 0-12-25 1-10/7-5/4 utonal
56 0-13-25 1-7/4-5/4 otonal
57 0-20-25 1-20/11-5/4 utonal
58 0-21-25 1-10/9-5/4 utonal
59 0-23-25 1-5/3-5/4 utonal

Tetrads

Number Chord Transversal Type
1 0-1-2-3 1-11/9-3/2-11/6 rastmic
2 0-1-2-4 1-11/9-3/2-9/8 rastmic
3 0-1-3-4 1-11/9-11/6-9/8 rastmic
4 0-2-3-4 1-3/2-11/6-9/8 rastmic
5 0-1-2-5 1-11/9-3/2-11/8 rastmic
6 0-1-3-5 1-11/9-11/6-11/8 utonal
7 0-2-3-5 1-3/2-11/6-11/8 ambitonal
8 0-1-4-5 1-11/9-9/8-11/8 rastmic
9 0-2-4-5 1-3/2-9/8-11/8 otonal
10 0-3-4-5 1-11/6-9/8-11/8 rastmic
11 0-3-4-8 1-11/6-9/8-14/11 nofives
12 0-3-5-8 1-11/6-11/8-14/11 hemimin
13 0-4-5-8 1-9/8-11/8-14/11 nofives
14 0-1-4-9 1-11/9-9/8-14/9 nofives
15 0-1-5-9 1-11/9-11/8-14/9 pentacircle
16 0-4-5-9 1-9/8-11/8-14/9 pentacircle
17 0-4-8-9 1-9/8-14/11-14/9 pentacircle
18 0-5-8-9 1-11/8-14/11-14/9 nofives
19 0-2-3-11 1-3/2-11/6-7/6 otonal
20 0-3-8-11 1-11/6-14/11-7/6 hemimin
21 0-8-9-11 1-14/11-14/9-7/6 utonal
22 0-1-3-12 1-11/9-11/6-10/7 swetismic
23 0-1-4-12 1-11/9-9/8-10/7 jove
24 0-3-4-12 1-11/6-9/8-10/7 jove
25 0-3-8-12 1-11/6-14/11-10/7 hemififths
26 0-4-8-12 1-9/8-14/11-10/7 pele
27 0-1-9-12 1-11/9-14/9-10/7 swetismic
28 0-4-9-12 1-9/8-14/9-10/7 hemififths
29 0-8-9-12 1-14/11-14/9-10/7 jove
30 0-3-11-12 1-11/6-7/6-10/7 swetismic
31 0-8-11-12 1-14/11-7/6-10/7 jove
32 0-9-11-12 1-14/9-7/6-10/7 swetismic
33 0-1-2-13 1-11/9-3/2-7/4 jove
34 0-1-4-13 1-11/9-9/8-7/4 jove
35 0-2-4-13 1-3/2-9/8-7/4 otonal
36 0-1-5-13 1-11/9-11/8-7/4 werckismic
37 0-2-5-13 1-3/2-11/8-7/4 otonal
38 0-4-5-13 1-9/8-11/8-7/4 otonal
39 0-4-8-13 1-9/8-14/11-7/4 pentacircle
40 0-5-8-13 1-11/8-14/11-7/4 hemimin
41 0-1-9-13 1-11/9-14/9-7/4 werckismic
42 0-4-9-13 1-9/8-14/9-7/4 pentacircle
43 0-5-9-13 1-11/8-14/9-7/4 pentacircle
44 0-8-9-13 1-14/11-14/9-7/4 utonal
45 0-2-11-13 1-3/2-7/6-7/4 ambitonal
46 0-8-11-13 1-14/11-7/6-7/4 utonal
47 0-9-11-13 1-14/9-7/6-7/4 utonal
48 0-1-12-13 1-11/9-10/7-7/4 jove
49 0-4-12-13 1-9/8-10/7-7/4 werckismic
50 0-8-12-13 1-14/11-10/7-7/4 werckismic
51 0-9-12-13 1-14/9-10/7-7/4 jove
52 0-11-12-13 1-7/6-10/7-7/4 jove
53 0-8-9-20 1-14/11-14/9-20/11 swetismic
54 0-8-11-20 1-14/11-7/6-20/11 swetismic
55 0-9-11-20 1-14/9-7/6-20/11 swetismic
56 0-8-12-20 1-14/11-10/7-20/11 werckismic
57 0-9-12-20 1-14/9-10/7-20/11 swetismic
58 0-11-12-20 1-7/6-10/7-20/11 swetismic
59 0-1-9-21 1-11/9-14/9-10/9 otonal
60 0-8-9-21 1-14/11-14/9-10/9 werckismic
61 0-1-12-21 1-11/9-10/7-10/9 swetismic
62 0-8-12-21 1-14/11-10/7-10/9 werckismic
63 0-9-12-21 1-14/9-10/7-10/9 swetismic
64 0-1-13-21 1-11/9-7/4-10/9 werckismic
65 0-8-13-21 1-14/11-7/4-10/9 werckismic
66 0-9-13-21 1-14/9-7/4-10/9 werckismic
67 0-12-13-21 1-10/7-7/4-10/9 werckismic
68 0-8-20-21 1-14/11-20/11-10/9 werckismic
69 0-9-20-21 1-14/9-20/11-10/9 swetismic
70 0-12-20-21 1-10/7-20/11-10/9 utonal
71 0-2-3-23 1-3/2-11/6-5/3 otonal
72 0-2-11-23 1-3/2-7/6-5/3 otonal
73 0-3-11-23 1-11/6-7/6-5/3 otonal
74 0-3-12-23 1-11/6-10/7-5/3 swetismic
75 0-11-12-23 1-7/6-10/7-5/3 swetismic
76 0-11-20-23 1-7/6-20/11-5/3 swetismic
77 0-12-20-23 1-10/7-20/11-5/3 utonal
78 0-12-21-23 1-10/7-10/9-5/3 utonal
79 0-20-21-23 1-20/11-10/9-5/3 utonal
80 0-2-4-25 1-3/2-9/8-5/4 otonal
81 0-2-5-25 1-3/2-11/8-5/4 otonal
82 0-4-5-25 1-9/8-11/8-5/4 otonal
83 0-4-12-25 1-9/8-10/7-5/4 werckismic
84 0-2-13-25 1-3/2-7/4-5/4 otonal
85 0-4-13-25 1-9/8-7/4-5/4 otonal
86 0-5-13-25 1-11/8-7/4-5/4 otonal
87 0-12-13-25 1-10/7-7/4-5/4 werckismic
88 0-12-20-25 1-10/7-20/11-5/4 utonal
89 0-12-21-25 1-10/7-10/9-5/4 utonal
90 0-13-21-25 1-7/4-10/9-5/4 werckismic
91 0-20-21-25 1-20/11-10/9-5/4 utonal
92 0-2-23-25 1-3/2-5/3-5/4 ambitonal
93 0-12-23-25 1-10/7-5/3-5/4 utonal
94 0-20-23-25 1-20/11-5/3-5/4 utonal
95 0-21-23-25 1-10/9-5/3-5/4 utonal

Pentads

Number Chord Transversal Type
1 0-1-2-3-4 1-11/9-3/2-11/6-9/8 rastmic
2 0-1-2-3-5 1-11/9-3/2-11/6-11/8 rastmic
3 0-1-2-4-5 1-11/9-3/2-9/8-11/8 rastmic
4 0-1-3-4-5 1-11/9-11/6-9/8-11/8 rastmic
5 0-2-3-4-5 1-3/2-11/6-9/8-11/8 rastmic
6 0-3-4-5-8 1-11/6-9/8-11/8-14/11 nofives
7 0-1-4-5-9 1-11/9-9/8-11/8-14/9 nofives
8 0-4-5-8-9 1-9/8-11/8-14/11-14/9 nofives
9 0-1-3-4-12 1-11/9-11/6-9/8-10/7 jove
10 0-3-4-8-12 1-11/6-9/8-14/11-10/7 hemififths
11 0-1-4-9-12 1-11/9-9/8-14/9-10/7 hemififths
12 0-4-8-9-12 1-9/8-14/11-14/9-10/7 hemififths
13 0-3-8-11-12 1-11/6-14/11-7/6-10/7 hemififths
14 0-8-9-11-12 1-14/11-14/9-7/6-10/7 jove
15 0-1-2-4-13 1-11/9-3/2-9/8-7/4 jove
16 0-1-2-5-13 1-11/9-3/2-11/8-7/4 jove
17 0-1-4-5-13 1-11/9-9/8-11/8-7/4 jove
18 0-2-4-5-13 1-3/2-9/8-11/8-7/4 otonal
19 0-4-5-8-13 1-9/8-11/8-14/11-7/4 nofives
20 0-1-4-9-13 1-11/9-9/8-14/9-7/4 hemififths
21 0-1-5-9-13 1-11/9-11/8-14/9-7/4 pele
22 0-4-5-9-13 1-9/8-11/8-14/9-7/4 pentacircle
23 0-4-8-9-13 1-9/8-14/11-14/9-7/4 pentacircle
24 0-5-8-9-13 1-11/8-14/11-14/9-7/4 nofives
25 0-8-9-11-13 1-14/11-14/9-7/6-7/4 utonal
26 0-1-4-12-13 1-11/9-9/8-10/7-7/4 jove
27 0-4-8-12-13 1-9/8-14/11-10/7-7/4 pele
28 0-1-9-12-13 1-11/9-14/9-10/7-7/4 jove
29 0-4-9-12-13 1-9/8-14/9-10/7-7/4 hemififths
30 0-8-9-12-13 1-14/11-14/9-10/7-7/4 jove
31 0-8-11-12-13 1-14/11-7/6-10/7-7/4 jove
32 0-9-11-12-13 1-14/9-7/6-10/7-7/4 jove
33 0-8-9-11-20 1-14/11-14/9-7/6-20/11 swetismic
34 0-8-9-12-20 1-14/11-14/9-10/7-20/11 jove
35 0-8-11-12-20 1-14/11-7/6-10/7-20/11 jove
36 0-9-11-12-20 1-14/9-7/6-10/7-20/11 swetismic
37 0-1-9-12-21 1-11/9-14/9-10/7-10/9 swetismic
38 0-8-9-12-21 1-14/11-14/9-10/7-10/9 jove
39 0-1-9-13-21 1-11/9-14/9-7/4-10/9 werckismic
40 0-8-9-13-21 1-14/11-14/9-7/4-10/9 werckismic
41 0-1-12-13-21 1-11/9-10/7-7/4-10/9 jove
42 0-8-12-13-21 1-14/11-10/7-7/4-10/9 werckismic
43 0-9-12-13-21 1-14/9-10/7-7/4-10/9 jove
44 0-8-9-20-21 1-14/11-14/9-20/11-10/9 jove
45 0-8-12-20-21 1-14/11-10/7-20/11-10/9 werckismic
46 0-9-12-20-21 1-14/9-10/7-20/11-10/9 swetismic
47 0-2-3-11-23 1-3/2-11/6-7/6-5/3 otonal
48 0-3-11-12-23 1-11/6-7/6-10/7-5/3 swetismic
49 0-11-12-20-23 1-7/6-10/7-20/11-5/3 swetismic
50 0-12-20-21-23 1-10/7-20/11-10/9-5/3 utonal
51 0-2-4-5-25 1-3/2-9/8-11/8-5/4 otonal
52 0-2-4-13-25 1-3/2-9/8-7/4-5/4 otonal
53 0-2-5-13-25 1-3/2-11/8-7/4-5/4 otonal
54 0-4-5-13-25 1-9/8-11/8-7/4-5/4 otonal
55 0-4-12-13-25 1-9/8-10/7-7/4-5/4 werckismic
56 0-12-13-21-25 1-10/7-7/4-10/9-5/4 werckismic
57 0-12-20-21-25 1-10/7-20/11-10/9-5/4 utonal
58 0-12-20-23-25 1-10/7-20/11-5/3-5/4 utonal
59 0-12-21-23-25 1-10/7-10/9-5/3-5/4 utonal
60 0-20-21-23-25 1-20/11-10/9-5/3-5/4 utonal

Hexads

Number Chord Transversal Type
1 0-1-2-3-4-5 1-11/9-3/2-11/6-9/8-11/8 rastmic
2 0-1-2-4-5-13 1-11/9-3/2-9/8-11/8-7/4 jove
3 0-1-4-5-9-13 1-11/9-9/8-11/8-14/9-7/4 hemififths
4 0-4-5-8-9-13 1-9/8-11/8-14/11-14/9-7/4 nofives
5 0-1-4-9-12-13 1-11/9-9/8-14/9-10/7-7/4 hemififths
6 0-4-8-9-12-13 1-9/8-14/11-14/9-10/7-7/4 hemififths
7 0-8-9-11-12-13 1-14/11-14/9-7/6-10/7-7/4 jove
8 0-8-9-11-12-20 1-14/11-14/9-7/6-10/7-20/11 jove
9 0-1-9-12-13-21 1-11/9-14/9-10/7-7/4-10/9 jove
10 0-8-9-12-13-21 1-14/11-14/9-10/7-7/4-10/9 jove
11 0-8-9-12-20-21 1-14/11-14/9-10/7-20/11-10/9 jove
12 0-2-4-5-13-25 1-3/2-9/8-11/8-7/4-5/4 otonal
13 0-12-20-21-23-25 1-10/7-20/11-10/9-5/3-5/4 utonal