27edo: Difference between revisions

ArrowHead294 (talk | contribs)
No edit summary
Theory: restore "they both support the augene temperament"
Line 8: Line 8:
However, assuming pure octaves, 27 has a fifth sharp by slightly more than nine cents and a 7/4 sharp by slightly less, and the same 400 cent major third as [[12edo]], which is sharp by 13.7 cents. The result is that [[6/5]], [[7/5]], and especially [[7/6]] are all tuned more accurately than this. It can be considered the superpythagorean counterpart of [[19edo]], as its 5th is audibly indistinguishable from 1/3 [[septimal comma]] superpyth in the same way that 19edo is audibly indistinguishable from [[1/3 syntonic comma meantone]], resulting in three of them reaching a near perfect minor third and major sixth in both, with 19edo reaching a near-perfect [[6/5]] and 27edo reaching a near-perfect [[7/6]].
However, assuming pure octaves, 27 has a fifth sharp by slightly more than nine cents and a 7/4 sharp by slightly less, and the same 400 cent major third as [[12edo]], which is sharp by 13.7 cents. The result is that [[6/5]], [[7/5]], and especially [[7/6]] are all tuned more accurately than this. It can be considered the superpythagorean counterpart of [[19edo]], as its 5th is audibly indistinguishable from 1/3 [[septimal comma]] superpyth in the same way that 19edo is audibly indistinguishable from [[1/3 syntonic comma meantone]], resulting in three of them reaching a near perfect minor third and major sixth in both, with 19edo reaching a near-perfect [[6/5]] and 27edo reaching a near-perfect [[7/6]].


27edo, with its 400 cent major third, tempers out the [[lesser diesis]] of [[128/125]] and the septimal comma, [[64/63]], and hence [[126/125]] as well. These it shares with 12edo, making some relationships familiar. It shares with [[22edo]] tempering out the allegedly Bohlen-Pierce comma [[245/243]] as well as 64/63, so that they both support the [[superpyth]] temperament, with four quite sharp "superpythagorean" fifths giving a sharp [[9/7]] in place of meantone's 5/4.
27edo, with its 400 cent major third, tempers out the [[lesser diesis]] of [[128/125]] and the septimal comma, [[64/63]], and hence [[126/125]] as well. These it shares with 12edo, making some relationships familiar, and they both support the [[augene]] temperament. It shares with [[22edo]] tempering out the allegedly Bohlen-Pierce comma [[245/243]] as well as 64/63, so that they both support the [[superpyth]] temperament, with four quite sharp "superpythagorean" fifths giving a sharp [[9/7]] in place of meantone's 5/4.


Though the [[7-limit]] tuning of 27edo is not highly accurate, it nonetheless is the smallest equal division to represent the 7-odd-limit both [[consistent]]ly and distinctly – that is, everything in the [[7-odd-limit]] diamond is uniquely represented by a certain number of steps of 27edo. It also represents the 13th harmonic very well, and performs quite decently as a 2.3.5.7.13 temperament. It also approximates [[19/10]], [[19/12]], and [[19/14]], so 0-7-13-25 does quite well as a 10:12:14:19; the major seventh 25\27 is less than a cent off from 19/10. Octave-inverted, these also form a quite convincing approximation of the main Bohlen-Pierce triad, 3:5:7, making it the smallest edo that can simulate tritave harmony, although it rapidly becomes quite rough if extended to the 9 and above, unlike a true tritave based system.
Though the [[7-limit]] tuning of 27edo is not highly accurate, it nonetheless is the smallest equal division to represent the 7-odd-limit both [[consistent]]ly and distinctly – that is, everything in the [[7-odd-limit]] diamond is uniquely represented by a certain number of steps of 27edo. It also represents the 13th harmonic very well, and performs quite decently as a 2.3.5.7.13 temperament. It also approximates [[19/10]], [[19/12]], and [[19/14]], so 0-7-13-25 does quite well as a 10:12:14:19; the major seventh 25\27 is less than a cent off from 19/10. Octave-inverted, these also form a quite convincing approximation of the main Bohlen-Pierce triad, 3:5:7, making it the smallest edo that can simulate tritave harmony, although it rapidly becomes quite rough if extended to the 9 and above, unlike a true tritave based system.