User:BudjarnLambeth/Lucky scale: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
mNo edit summary
Line 9: Line 9:


'''Intervals'''
'''Intervals'''
* 111.
# 111.
* 222.
# 222.
* 333.
# 333.
* 444.
# 444.
* 555.
# 555.
* 666.
# 666.
* 777.
# 777.
* 888.
# 888.
* 999.
# 999.
* 1110.
# 1110.
* 1221.
# 1221.
* 1332.
# 1332.
* 1443.
# 1443.
* 1554.
# 1554.
 
===9ed777c===
 
'''Harmonics'''
{{harmonics in equal|9|719|459|title=Approximation of harmonics in 9ed777c}}
 
'''Intervals'''
# 86.333
# 172.667
# 259.
# 345.333
# 431.667
# 518.
# 604.333
# 690.667
# 777.
# 863.333
# 949.667
# 1036.
# 1122.333
# 1208.667
# 1295.
# 1381.333
# 1467.667
# 1554.


[[Category:Edonoi]][[Category:Equal-step tuning]]
[[Category:Edonoi]][[Category:Equal-step tuning]]

Revision as of 21:02, 6 March 2024

A lucky scale[idiosyncratic term] (ed777c) is an equal-step tuning in which the interval 777 cents is divided in a given number of equal steps.

Examples

7ed777c

Harmonics

Approximation of harmonics in 7ed777c
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +21.0 -15.0 +42.0 -11.3 +6.0 -38.8 -48.0 -29.9 +9.7 -44.3 +27.0
Relative (%) +18.9 -13.5 +37.8 -10.2 +5.4 -35.0 -43.3 -27.0 +8.7 -39.9 +24.4
Steps
(reduced)
11
(4)
17
(3)
22
(1)
25
(4)
28
(0)
30
(2)
32
(4)
34
(6)
36
(1)
37
(2)
39
(4)

Intervals

  1. 111.
  2. 222.
  3. 333.
  4. 444.
  5. 555.
  6. 666.
  7. 777.
  8. 888.
  9. 999.
  10. 1110.
  11. 1221.
  12. 1332.
  13. 1443.
  14. 1554.

9ed777c

Harmonics

Approximation of harmonics in 9ed777c
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +8.7 -2.6 +17.3 -23.7 +6.0 -1.8 +26.0 -5.3 -15.0 -7.3 +14.7
Relative (%) +10.0 -3.0 +20.1 -27.4 +7.0 -2.1 +30.1 -6.1 -17.4 -8.5 +17.0
Steps
(reduced)
14
(5)
22
(4)
28
(1)
32
(5)
36
(0)
39
(3)
42
(6)
44
(8)
46
(1)
48
(3)
50
(5)

Intervals

  1. 86.333
  2. 172.667
  3. 259.
  4. 345.333
  5. 431.667
  6. 518.
  7. 604.333
  8. 690.667
  9. 777.
  10. 863.333
  11. 949.667
  12. 1036.
  13. 1122.333
  14. 1208.667
  15. 1295.
  16. 1381.333
  17. 1467.667
  18. 1554.