Chirality: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Sarzadoce
**Imported revision 553638446 - Original comment: **
 
Wikispaces>Sarzadoce
**Imported revision 553638726 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Sarzadoce|Sarzadoce]] and made on <tt>2015-06-10 20:16:22 UTC</tt>.<br>
: This revision was by author [[User:Sarzadoce|Sarzadoce]] and made on <tt>2015-06-10 20:20:40 UTC</tt>.<br>
: The original revision id was <tt>553638446</tt>.<br>
: The original revision id was <tt>553638726</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:
Scales for which this property does not hold are called **achiral**. For example, the diatonic scale is achiral because 2221221 reverses to 1221222, which is identical to the original scale up to cyclical permutation.
Scales for which this property does not hold are called **achiral**. For example, the diatonic scale is achiral because 2221221 reverses to 1221222, which is identical to the original scale up to cyclical permutation.


||   ||
|| **EDO** || **Percentage of**
||   ||
**Chiral Scales** || **Ratio of**
|| 0.0% ||
**Chiral Scales** ||
|| 0.0% ||
|| 1 || 0.0% || 1/1 ||
|| 0.0% ||
|| 2 || 0.0% || 1/1 ||
|| 0.0% ||
|| 3 || 0.0% || 1/1 ||
|| 0.0% ||
|| 4 || 0.0% || 1/1 ||
|| 22.2% ||
|| 5 || 0.0% || 1/1 ||
|| 22.2% ||
|| 6 || 22.2% || 7/9 ||
|| 40.0% ||
|| 7 || 22.2% || 7/9 ||
|| 50.0% ||
|| 8 || 40.0% || 3/5 ||
|| 60.6% ||
|| 9 || 50.0% || 1/2 ||
|| 66.7% ||
|| 10 || 60.6% || 13/33 ||
|| 75.8% ||
|| 11 || 66.7% || 1/3 ||
|| 80.0% ||
|| 12 || 75.8% || 81/335 ||
|| 84.9% ||
|| 13 || 80.0% || 1/5 ||
|| 88.7% ||
|| 14 || 84.9% || 175/1161 ||
|| 91.2% ||
|| 15 || 88.7% || 123/1091 ||
|| 93.4% ||
|| 16 || 91.2% || 3/34 ||
|| 95.0% ||
|| 17 || 93.4% || 17/257 ||
|| 96.3% ||
|| 18 || 95.0% || 26/519 ||
|| 97.2% ||</pre></div>
|| 19 || 96.3% || 1/27 ||
|| 20 || 97.2% || 495/17459 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Chirality&lt;/title&gt;&lt;/head&gt;&lt;body&gt;A scale is called &lt;strong&gt;chiral&lt;/strong&gt; if reversing the order of the steps results in a different scale. The two scales form a &lt;strong&gt;chiral pair&lt;/strong&gt; and are right/left-handed. Handedness is determined by writing both scales in their canonical mode and then comparing the size of both. The smallest example of a chiral pair in an EDO is 321/312, with the former being right-handed and the latter being left-handed.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Chirality&lt;/title&gt;&lt;/head&gt;&lt;body&gt;A scale is called &lt;strong&gt;chiral&lt;/strong&gt; if reversing the order of the steps results in a different scale. The two scales form a &lt;strong&gt;chiral pair&lt;/strong&gt; and are right/left-handed. Handedness is determined by writing both scales in their canonical mode and then comparing the size of both. The smallest example of a chiral pair in an EDO is 321/312, with the former being right-handed and the latter being left-handed.&lt;br /&gt;
Line 41: Line 42:
&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;EDO&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;Percentage of&lt;/strong&gt; &lt;br /&gt;
&lt;strong&gt;Chiral Scales&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;Ratio of&lt;/strong&gt;&lt;br /&gt;
&lt;strong&gt;Chiral Scales&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
         &lt;td&gt;0.0%&lt;br /&gt;
         &lt;td&gt;0.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;0.0%&lt;br /&gt;
         &lt;td&gt;0.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;0.0%&lt;br /&gt;
         &lt;td&gt;0.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;0.0%&lt;br /&gt;
         &lt;td&gt;0.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;0.0%&lt;br /&gt;
         &lt;td&gt;0.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;22.2%&lt;br /&gt;
         &lt;td&gt;22.2%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;22.2%&lt;br /&gt;
         &lt;td&gt;22.2%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/9&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;40.0%&lt;br /&gt;
         &lt;td&gt;40.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;50.0%&lt;br /&gt;
         &lt;td&gt;50.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/2&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;60.6%&lt;br /&gt;
         &lt;td&gt;60.6%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/33&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;66.7%&lt;br /&gt;
         &lt;td&gt;66.7%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/3&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;75.8%&lt;br /&gt;
         &lt;td&gt;75.8%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81/335&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;80.0%&lt;br /&gt;
         &lt;td&gt;80.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/5&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;84.9%&lt;br /&gt;
         &lt;td&gt;84.9%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;175/1161&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;88.7%&lt;br /&gt;
         &lt;td&gt;88.7%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;123/1091&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;91.2%&lt;br /&gt;
         &lt;td&gt;91.2%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/34&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;93.4%&lt;br /&gt;
         &lt;td&gt;93.4%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/257&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;95.0%&lt;br /&gt;
         &lt;td&gt;95.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;26/519&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;96.3%&lt;br /&gt;
         &lt;td&gt;96.3%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/27&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
         &lt;td&gt;97.2%&lt;br /&gt;
         &lt;td&gt;97.2%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;495/17459&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;

Revision as of 20:20, 10 June 2015

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Sarzadoce and made on 2015-06-10 20:20:40 UTC.
The original revision id was 553638726.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

A scale is called **chiral** if reversing the order of the steps results in a different scale. The two scales form a **chiral pair** and are right/left-handed. Handedness is determined by writing both scales in their canonical mode and then comparing the size of both. The smallest example of a chiral pair in an EDO is 321/312, with the former being right-handed and the latter being left-handed.

Scales for which this property does not hold are called **achiral**. For example, the diatonic scale is achiral because 2221221 reverses to 1221222, which is identical to the original scale up to cyclical permutation.

|| **EDO** || **Percentage of** 
**Chiral Scales** || **Ratio of**
**Chiral Scales** ||
|| 1 || 0.0% || 1/1 ||
|| 2 || 0.0% || 1/1 ||
|| 3 || 0.0% || 1/1 ||
|| 4 || 0.0% || 1/1 ||
|| 5 || 0.0% || 1/1 ||
|| 6 || 22.2% || 7/9 ||
|| 7 || 22.2% || 7/9 ||
|| 8 || 40.0% || 3/5 ||
|| 9 || 50.0% || 1/2 ||
|| 10 || 60.6% || 13/33 ||
|| 11 || 66.7% || 1/3 ||
|| 12 || 75.8% || 81/335 ||
|| 13 || 80.0% || 1/5 ||
|| 14 || 84.9% || 175/1161 ||
|| 15 || 88.7% || 123/1091 ||
|| 16 || 91.2% || 3/34 ||
|| 17 || 93.4% || 17/257 ||
|| 18 || 95.0% || 26/519 ||
|| 19 || 96.3% || 1/27 ||
|| 20 || 97.2% || 495/17459 ||

Original HTML content:

<html><head><title>Chirality</title></head><body>A scale is called <strong>chiral</strong> if reversing the order of the steps results in a different scale. The two scales form a <strong>chiral pair</strong> and are right/left-handed. Handedness is determined by writing both scales in their canonical mode and then comparing the size of both. The smallest example of a chiral pair in an EDO is 321/312, with the former being right-handed and the latter being left-handed.<br />
<br />
Scales for which this property does not hold are called <strong>achiral</strong>. For example, the diatonic scale is achiral because 2221221 reverses to 1221222, which is identical to the original scale up to cyclical permutation.<br />
<br />


<table class="wiki_table">
    <tr>
        <td><strong>EDO</strong><br />
</td>
        <td><strong>Percentage of</strong> <br />
<strong>Chiral Scales</strong><br />
</td>
        <td><strong>Ratio of</strong><br />
<strong>Chiral Scales</strong><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>0.0%<br />
</td>
        <td>1/1<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>0.0%<br />
</td>
        <td>1/1<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>0.0%<br />
</td>
        <td>1/1<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>0.0%<br />
</td>
        <td>1/1<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>0.0%<br />
</td>
        <td>1/1<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>22.2%<br />
</td>
        <td>7/9<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>22.2%<br />
</td>
        <td>7/9<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>40.0%<br />
</td>
        <td>3/5<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>50.0%<br />
</td>
        <td>1/2<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>60.6%<br />
</td>
        <td>13/33<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>66.7%<br />
</td>
        <td>1/3<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>75.8%<br />
</td>
        <td>81/335<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>80.0%<br />
</td>
        <td>1/5<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>84.9%<br />
</td>
        <td>175/1161<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>88.7%<br />
</td>
        <td>123/1091<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>91.2%<br />
</td>
        <td>3/34<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>93.4%<br />
</td>
        <td>17/257<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>95.0%<br />
</td>
        <td>26/519<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>96.3%<br />
</td>
        <td>1/27<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>97.2%<br />
</td>
        <td>495/17459<br />
</td>
    </tr>
</table>

</body></html>