2460edo: Difference between revisions

Eliora (talk | contribs)
Cleanup; style; clarify the title row of the rank-2 temp table
Line 5: Line 5:
2460edo is uniquely [[consistent]] through to the [[27-odd-limit]], which is not very remarkable in itself ([[388edo]] is the first such system), but what is remarkable is the degree of accuracy to which it represents the 27-odd-limit intervals (see below). It is also a [[The Riemann Zeta Function and Tuning #Zeta EDO lists|zeta peak and zeta peak integer edo]], and it has been used in [[Sagittal notation]] to define the ''olympian level'' of JI notation.
2460edo is uniquely [[consistent]] through to the [[27-odd-limit]], which is not very remarkable in itself ([[388edo]] is the first such system), but what is remarkable is the degree of accuracy to which it represents the 27-odd-limit intervals (see below). It is also a [[The Riemann Zeta Function and Tuning #Zeta EDO lists|zeta peak and zeta peak integer edo]], and it has been used in [[Sagittal notation]] to define the ''olympian level'' of JI notation.


As a micro (or nano) temperament, it is a landscape system in the 7-limit, tempering out [[250047/250000]], and in the 11-limit it tempers out [[9801/9800]]. Beyond that, [[10648/10647]] in the 13-limit, 12376/12375 in the 17-limit, 5929/5928 and 6860/6859 in the 19-limit and 8281/8280 in the 23-limit.
As a micro- (or nano-) temperament, it is a landscape system in the 7-limit, tempering out [[250047/250000]], and in the 11-limit it tempers out [[9801/9800]]. Beyond that, [[10648/10647]] in the 13-limit, 12376/12375 in the 17-limit, 5929/5928 and 6860/6859 in the 19-limit and 8281/8280 in the 23-limit.


=== Prime harmonics ===
=== Prime harmonics ===
Line 20: Line 20:
== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" |Optimal
! rowspan="2" | Optimal<br>8ve Stretch (¢)
8ve stretch (¢)
! colspan="2" | Tuning Error
! colspan="2" |Tuning error
|-
|-
![[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
|-
|-
|2.3
| 2.3
|{{monzo|-3899 4320}}
| {{monzo| -3899 4320 }}
|[{{val|2460 3899}}]
| {{mapping| 2460 3899 }}
|0.001
| 0.001
|0.001
| 0.001
|0.24
| 0.24
|-
|-
|2.3.5
| 2.3.5
|{{monzo|91 -12 -31}}, {{monzo|-70  72 -19}}
| {{monzo| 91 -12 -31 }}, {{monzo| -70  72 -19 }}
|[{{val|2460 3899 5712}}]
| {{mapping| 2460 3899 5712 }}
|<nowiki>-0.003</nowiki>
| -0.003
|0.006
| 0.006
|1.29
| 1.29
|-
|-
|2.3.5.7
| 2.3.5.7
|250047/250000, {{monzo|3 -24  3 10}}, {{monzo|-48 0 11 8}}
| 250047/250000, {{monzo| 3 -24 3 10 }}, {{monzo| -48 0 11 8 }}
|[{{val|2460 3899 5712 6096}}]
| {{mapping| 2460 3899 5712 6096 }}
|0.002
| 0.002
|0.010
| 0.010
|2.05
| 2.05
|-
|-
|2.3.5.7.11
| 2.3.5.7.11
|9801/9800, 250047/250000, {{monzo|24 -10 -5  0 1}}, {{monzo|-3 -16 -1 6 4}}
| 9801/9800, 250047/250000, {{monzo| 24 -10 -5  0 1 }}, {{monzo| -3 -16 -1 6 4 }}
|[{{val|2460 3899 5712 6096<br>8510}}]
| {{mapping| 2460 3899 5712 6096 8510 }}
|0.007
| 0.007
|0.014
| 0.014
|2.86
| 2.86
|-
|-
|2.3.5.7.11.13
| 2.3.5.7.11.13
|9801/9800, 10648/10647, 105644/105625, 196625/196608, 1063348/1063125
| 9801/9800, 10648/10647, 105644/105625, 196625/196608, 1063348/1063125
|[{{val|2460 3899 5712 6096<br>8510 9103}}]
| {{mapping| 2460 3899 5712 6096 8510 9103 }}
|0.008
| 0.008
|0.013
| 0.013
|2.63
| 2.63
|-
|-
|2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
|9801/9800, 10648/10647, 12376/12375, 31213/31212, 37180/37179, 221221/221184
| 9801/9800, 10648/10647, 12376/12375, 31213/31212, 37180/37179, 221221/221184
|[{{val|2460 3899 5712 6096<br>8510 9103 10055}}]
| {{mapping| 2460 3899 5712 6096 8510 9103 10055 }}
|0.009
| 0.009
|0.013
| 0.013
|2.56
| 2.56
|}
|}
2460edo has lower 23-limit relative error than any edo until [[8269edo|8269]]. Also it has a lower 23-limit [[TE logflat badness]] than any smaller edo and less than any until [[16808edo|16808]].
* 2460edo has lower 23-limit relative error than any edo until [[8269edo|8269]]. Also it has a lower 23-limit [[TE logflat badness]] than any smaller edo and less than any until [[16808edo|16808]].
 
* In addition, it has the lowest relative error in the 19-limit, being only bettered by [[3395edo]].
In addition, it has the lowest relative error in the 19-limit, being only bettered by [[3395edo]].


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Generator*
! Cents<br>(Reduced)
! Cents*
! Associated<br>Ratio
! Associated<br>Ratio
! Temperaments
! Temperaments
Line 117: Line 115:
| 1021\2460<br>(1\2460)
| 1021\2460<br>(1\2460)
| 498.049<br>(0.488)
| 498.049<br>(0.488)
| 4/3<br>({{monzo|215 -121 -10}})
| 4/3<br>({{monzo| 215 -121 -10 }})
| [[Niobium]]
| [[Niobium]]
|-
|-
Line 132: Line 130:
| [[Minutes]]
| [[Minutes]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct


[[Category:Mina]]
[[Category:Mina]]