30631edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
mNo edit summary
BudjarnLambeth (talk | contribs)
mNo edit summary
Line 1: Line 1:
{{novelty}}{{stub}}{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|30631}} It is [[consistent]] in the 35-odd-limit and is a [[zeta peak integer edo]].
{{EDO intro|30631}} It is [[consistent]] in the 35-odd-limit and is a [[zeta peak integer edo]].



Revision as of 07:16, 9 July 2023

← 30630edo 30631edo 30632edo →
Prime factorization 30631 (prime)
Step size 0.039176 ¢ 
Fifth 17918\30631 (701.956 ¢)
Semitones (A1:m2) 2902:2303 (113.7 ¢ : 90.22 ¢)
Consistency limit 35
Distinct consistency limit 35

Template:EDO intro It is consistent in the 35-odd-limit and is a zeta peak integer edo.

Prime harmonics

Approximation of prime harmonics in 30631edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00000 +0.00053 +0.00080 -0.00347 +0.00588 -0.00662 -0.00291 -0.01049 -0.00886 +0.00721 +0.00050
Relative (%) +0.0 +1.4 +2.1 -8.9 +15.0 -16.9 -7.4 -26.8 -22.6 +18.4 +1.3
Steps
(reduced)
30631
(0)
48549
(17918)
71123
(9861)
85992
(24730)
105966
(14073)
113348
(21455)
125203
(2679)
130118
(7594)
138561
(16037)
148805
(26281)
151752
(29228)