354edo: Difference between revisions

Eliora (talk | contribs)
Template; style; -redundant category
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''354 equal divisions of the octave''' ('''354edo'''), or the '''354(-tone) equal temperament''' ('''354tet''', '''354et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 354 parts of about 3.39 [[cent]]s each.
{{EDO intro|354}}


== Theory ==
== Theory ==
354edo is [[enfactoring|enfactored]] in the 5-limit, with the same tuning as [[118edo]], defined by tempering out the [[schisma]] and the [[parakleisma]]. In the 7-limit, it tempers out 118098/117649 (stearnsma), 250047/250000 ([[landscape comma|landscape]]), and 703125/702464 ([[meter comma|meter]]); in the 11-limit, [[540/539]], and [[4000/3993]]; in the 13-limit, [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], [[4096/4095]], and [[4225/4224]]. It provides the [[optimal patent val]] for [[stearnscape]].  
354edo is [[enfactoring|enfactored]] in the 5-limit, with the same tuning as [[118edo]], defined by tempering out the [[schisma]] and the [[parakleisma]]. In the 7-limit, it tempers out 118098/117649 (stearnsma), 250047/250000 ([[landscape comma|landscape]]), and 703125/702464 ([[meter]]); in the 11-limit, [[540/539]], and [[4000/3993]]; in the 13-limit, [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], [[4096/4095]], and [[4225/4224]]. It provides the [[optimal patent val]] for [[stearnscape]].  


=== Prime harmonics ===
=== Prime harmonics ===
{{Primes in edo|354}}
{{Harmonics in equal|354}}
 
=== Subsets and supersets ===
Since 354 factors into 2 × 3 × 59, 354edo has subset edos {{EDOs| 2, 3, 6, 59, 118, and 177 }}.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning Error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 61: Line 64:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(reduced)
! Generator<br>(Reduced)
! Cents<br>(reduced)
! Cents<br>(Reduced)
! Associated<br>ratio
! Associated<br>Ratio
! Temperaments
! Temperaments
|-
|-
Line 75: Line 78:
| 147\354<br>(29\354)
| 147\354<br>(29\354)
| 498.31<br>(98.31)
| 498.31<br>(98.31)
| 4/3<br>(200/189)
| 4/3<br>(18/17)
| [[Term]] / terminator
| [[Term]] / terminator
|-
|-
Line 87: Line 90:
| 147\354<br>(29\354)
| 147\354<br>(29\354)
| 498.31<br>(98.31)
| 498.31<br>(98.31)
| 4/3<br>(200/189)
| 4/3<br>(18/17)
| [[Semiterm]]
| [[Semiterm]]
|-
|-
|118
| 118
|167\354<br>(2\354)
| 167\354<br>(2\354)
|566.101<br>(6.78)
| 566.101<br>(6.78)
|165/119<br>(?)
| 165/119<br>(?)
|[[Oganesson]]
| [[Oganesson]]
|}
|}
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->