282edo: Difference between revisions

Plumtree (talk | contribs)
m Infobox ET now computes most parameters automatically
Update intro and links; +subsets
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''282 equal divisions of the octave''' ('''282edo'''), or the '''282(-tone) equal temperament''' ('''282tet''', '''282et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 282 parts of about 4.26 [[cent]]s each.
{{EDO intro|282}}


== Theory ==
== Theory ==
282edo is the smallest equal temperament uniquely [[consistent]] through to the [[23-odd-limit]], and also the smallest consistent to the [[29-odd-limit]]. It shares the same 3rd, 7th, and 13th harmonics with [[94edo]] (282 = 3 × 94), as well as [[11/10]] and [[20/17]] (supporting the [[Stearnsmic clan #Garistearn|garistearn]] temperament). It has a distinct sharp tendency for odd harmonics up to 29. It tempers out [[6144/6125]] (porwell), 118098/117649 (stearnsma), and [[250047/250000]] (landscape comma) in the 7-limit, and [[540/539]] and 5632/5625 in the 11-limit, so that it provides the [[optimal patent val]] for the [[jupiter]] temperament; it also tempers out [[4000/3993]] and 234375/234256, providing the optimal patent val for [[septisuperfourth]] temperament. In the 13-limit, it tempers out [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], and [[10648/10647]]. It allows [[essentially tempered chord]]s including [[swetismic chords]], [[squbemic chords]], and [[petrmic triad]] in the 13-odd-limit, in addition to [[nicolic chords]] in the 15-odd-limit.  
282edo is the smallest edo distinctly [[consistent]] through to the [[23-odd-limit]], and also the smallest consistent to the [[29-odd-limit]]. It shares the same 3rd, 7th, and 13th harmonics with [[94edo]] (282 = 3 × 94), as well as [[11/10]] and [[20/17]] (supporting the [[Stearnsmic clan #Garistearn|garistearn]] temperament). It has a distinct sharp tendency for odd harmonics up to 29. It tempers out [[6144/6125]] (porwell), 118098/117649 (stearnsma), and [[250047/250000]] (landscape comma) in the 7-limit, and [[540/539]] and [[5632/5625]] in the 11-limit, so that it provides the [[optimal patent val]] for the [[jupiter]] temperament; it also tempers out [[4000/3993]] and 234375/234256, providing the optimal patent val for [[septisuperfourth]] temperament. In the 13-limit, it tempers out [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], and [[10648/10647]]. It allows [[essentially tempered chord]]s including [[swetismic chords]], [[squbemic chords]], and [[petrmic chords]] in the 13-odd-limit, in addition to [[nicolic chords]] in the 15-odd-limit.  


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|282|columns=11}}
{{Harmonics in equal|282|columns=11}}
=== Subsets and supersets ===
Since 282 factors into 2 × 3 × 47, it has subset edos {{EDOs| 2, 3, 47, 94, and 141 }}.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning Error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 72: Line 75:
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Periods<br>per 8ve
! Generator<br>(reduced)
! Generator<br>(Reduced)
! Cents<br>(reduced)
! Cents<br>(Reduced)
! Associated<br>ratio
! Associated<br>Ratio
! Temperaments
! Temperaments
|-
|-
Line 127: Line 130:
|}
|}


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:29-limit]]
[[Category:Septisuperfourth]]
[[Category:Septisuperfourth]]
[[Category:Jupiter]]
[[Category:Jupiter]]