1236edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 556730349 - Original comment: **
 
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
The 1236 division of the octave divides it into 1236 equal parts of 0.9709 cents each. It is a  [[The_Riemann_Zeta_Function_and_Tuning#Zeta EDO lists|zeta peak edo]], though not zeta integral nor zeta gap. It is a strong 17-limit system and uniquely consistent through the 17-limit, with a 17-limit comma basis of 2601/2600, 5832/5831, 9801/9800, 10648/10647, 14875/14872 and 105644/105625. It is divisible by 12 (12 * 103 = 1236).
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2015-08-15 12:11:29 UTC</tt>.<br>
: The original revision id was <tt>556730349</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 1236 division of the octave divides it into 1236 equal parts of 0.9709 cents each. It is a  [[The Riemann Zeta Function and Tuning#Zeta EDO lists|zeta peak edo]], though not zeta integral nor zeta gap. It is a strong 17-limit system and uniquely consistent through the 17-limit, with a 17-limit comma basis of 2601/2600, 5832/5831, 9801/9800, 10648/10647, 14875/14872 and 105644/105625. It is divisible by 12 (12 * 103 = 1236).</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;1236edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 1236 division of the octave divides it into 1236 equal parts of 0.9709 cents each. It is a  &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta EDO lists"&gt;zeta peak edo&lt;/a&gt;, though not zeta integral nor zeta gap. It is a strong 17-limit system and uniquely consistent through the 17-limit, with a 17-limit comma basis of 2601/2600, 5832/5831, 9801/9800, 10648/10647, 14875/14872 and 105644/105625. It is divisible by 12 (12 * 103 = 1236).&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

The 1236 division of the octave divides it into 1236 equal parts of 0.9709 cents each. It is a zeta peak edo, though not zeta integral nor zeta gap. It is a strong 17-limit system and uniquely consistent through the 17-limit, with a 17-limit comma basis of 2601/2600, 5832/5831, 9801/9800, 10648/10647, 14875/14872 and 105644/105625. It is divisible by 12 (12 * 103 = 1236).