80edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 360643180 - Original comment: **
Wikispaces>guest
**Imported revision 360658808 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2012-08-29 05:02:37 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-08-29 07:58:11 UTC</tt>.<br>
: The original revision id was <tt>360643180</tt>.<br>
: The original revision id was <tt>360658808</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 58: Line 58:
|| 30 || 450 || 13/10, 22/17 ||
|| 30 || 450 || 13/10, 22/17 ||
|| 31 || 465 || 17/13 ||
|| 31 || 465 || 17/13 ||
|| 32 || 480 || (21/16), 25/19 ||
|| 32 || 480 || 21/16, 25/19 ||
|| 33 || 495 || 4/3 ||
|| 33 || 495 || 4/3 ||
|| 34 || 510 ||  ||
|| 34 || 510 ||  ||
Line 360: Line 360:
         &lt;td&gt;480&lt;br /&gt;
         &lt;td&gt;480&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;(21/16), 25/19&lt;br /&gt;
         &lt;td&gt;21/16, 25/19&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;

Revision as of 07:58, 29 August 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author guest and made on 2012-08-29 07:58:11 UTC.
The original revision id was 360658808.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The //80 equal temperament//, often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 [[xenharmonic/cent|cent]]s. 80et is the first equal temperament that represents the [[xenharmonic/19-limit|19-limit]] [[xenharmonic/tonality diamond|tonality diamond]] [[xenharmonic/consistent|consistent]]ly (it barely manages to do so), and in fact represents the 21 odd limit tonality diamond consistently also.

80 et [[xenharmonic/tempering out|tempers out]] 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125.

80 supports a profusion of 19-limit (and lower) rank two temperaments which have mostly not been explored. We might mention:

31&80 <<7 6 15 27 -24 -23 -20 ... ||
72&80 <<24 30 40 24 32 24 0 ... ||
34&80 <<2 -4 -50 22 16 2 -40 ... ||
46&80 <<2 -4 30 22 16 2 40 ... ||
29&80 <<3 34 45 33 24 -37 20 ... ||
12&80 <<4 -8 -20 -36 32 4 0 ... ||
22&80 <<6 -10 12 -14 -32 6 -40 ... ||
58&80 <<6 -10 12 -14 -32 6 40 ... ||
41&80 <<7 26 25 -3 -24 -33 20 ... ||

In each case, the numbers joined by an ampersand represent 19-limit [[xenharmonic/Patent val|patent vals]] (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.

=Intervals of 80edo= 
||~ degrees ||~ cents ||~ ratios* ||
|| 0 || 0 || 1/1 ||
|| 1 || 15 || 64/63 ||
|| 2 || 30 || 81/80 ||
|| 3 || 45 || 34/33, 36/35 ||
|| 4 || 60 || 26/25, 28/27, 33/32, 35/34 ||
|| 5 || 75 || 22/21, 25/24, 27/26 ||
|| 6 || 90 || 19/18, 20/19, 21/20 ||
|| 7 || 105 || 16/15, 17/16, 18/17 ||
|| 8 || 120 || 14/13, 15/14 ||
|| 9 || 135 || 13/12 ||
|| 10 || 150 || 12/11 ||
|| 11 || 165 || 11/10 ||
|| 12 || 180 || 10/9, 21/19 ||
|| 13 || 195 || 19/17 ||
|| 14 || 210 || 9/8, 17/15 ||
|| 15 || 225 || 8/7 ||
|| 16 || 240 ||   ||
|| 17 || 255 || 15/13, 22/19 ||
|| 18 || 270 || 7/6 ||
|| 19 || 285 || 13/11, 20/17 ||
|| 20 || 300 || 19/16, 25/21 ||
|| 21 || 315 || 6/5 ||
|| 22 || 330 || 17/14 ||
|| 23 || 345 || 11/9 ||
|| 24 || 360 || 16/13, 21/17 ||
|| 25 || 375 ||   ||
|| 26 || 390 || 5/4 ||
|| 27 || 405 || 19/15, 24/19 ||
|| 28 || 420 || 14/11 ||
|| 29 || 435 || 9/7 ||
|| 30 || 450 || 13/10, 22/17 ||
|| 31 || 465 || 17/13 ||
|| 32 || 480 || 21/16, 25/19 ||
|| 33 || 495 || 4/3 ||
|| 34 || 510 ||   ||
|| 35 || 525 || 19/14 ||
|| 36 || 540 || 26/19 ||
|| 37 || 555 || 11/8 ||
|| 38 || 570 || 18/13 ||
|| 39 || 585 || 7/5 ||
|| 40 || 600 || 17/12, 24/17 ||
*based on treating 80edo as a [[19-limit]] temperament; other approaches are possible.

Original HTML content:

<html><head><title>80edo</title></head><body>The <em>80 equal temperament</em>, often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">cent</a>s. 80et is the first equal temperament that represents the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/19-limit">19-limit</a> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/tonality%20diamond">tonality diamond</a> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/consistent">consistent</a>ly (it barely manages to do so), and in fact represents the 21 odd limit tonality diamond consistently also.<br />
<br />
80 et <a class="wiki_link" href="http://xenharmonic.wikispaces.com/tempering%20out">tempers out</a> 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125.<br />
<br />
80 supports a profusion of 19-limit (and lower) rank two temperaments which have mostly not been explored. We might mention:<br />
<br />
31&amp;80 &lt;&lt;7 6 15 27 -24 -23 -20 ... ||<br />
72&amp;80 &lt;&lt;24 30 40 24 32 24 0 ... ||<br />
34&amp;80 &lt;&lt;2 -4 -50 22 16 2 -40 ... ||<br />
46&amp;80 &lt;&lt;2 -4 30 22 16 2 40 ... ||<br />
29&amp;80 &lt;&lt;3 34 45 33 24 -37 20 ... ||<br />
12&amp;80 &lt;&lt;4 -8 -20 -36 32 4 0 ... ||<br />
22&amp;80 &lt;&lt;6 -10 12 -14 -32 6 -40 ... ||<br />
58&amp;80 &lt;&lt;6 -10 12 -14 -32 6 40 ... ||<br />
41&amp;80 &lt;&lt;7 26 25 -3 -24 -33 20 ... ||<br />
<br />
In each case, the numbers joined by an ampersand represent 19-limit <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Patent%20val">patent vals</a> (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Intervals of 80edo"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals of 80edo</h1>
 

<table class="wiki_table">
    <tr>
        <th>degrees<br />
</th>
        <th>cents<br />
</th>
        <th>ratios*<br />
</th>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
        <td>1/1<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>15<br />
</td>
        <td>64/63<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>30<br />
</td>
        <td>81/80<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>45<br />
</td>
        <td>34/33, 36/35<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>60<br />
</td>
        <td>26/25, 28/27, 33/32, 35/34<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>75<br />
</td>
        <td>22/21, 25/24, 27/26<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>90<br />
</td>
        <td>19/18, 20/19, 21/20<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>105<br />
</td>
        <td>16/15, 17/16, 18/17<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>120<br />
</td>
        <td>14/13, 15/14<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>135<br />
</td>
        <td>13/12<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>150<br />
</td>
        <td>12/11<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>165<br />
</td>
        <td>11/10<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>180<br />
</td>
        <td>10/9, 21/19<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>195<br />
</td>
        <td>19/17<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>210<br />
</td>
        <td>9/8, 17/15<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>225<br />
</td>
        <td>8/7<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>240<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>255<br />
</td>
        <td>15/13, 22/19<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>270<br />
</td>
        <td>7/6<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>285<br />
</td>
        <td>13/11, 20/17<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>300<br />
</td>
        <td>19/16, 25/21<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>315<br />
</td>
        <td>6/5<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>330<br />
</td>
        <td>17/14<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>345<br />
</td>
        <td>11/9<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>360<br />
</td>
        <td>16/13, 21/17<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>375<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>390<br />
</td>
        <td>5/4<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>405<br />
</td>
        <td>19/15, 24/19<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>420<br />
</td>
        <td>14/11<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>435<br />
</td>
        <td>9/7<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>450<br />
</td>
        <td>13/10, 22/17<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>465<br />
</td>
        <td>17/13<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>480<br />
</td>
        <td>21/16, 25/19<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>495<br />
</td>
        <td>4/3<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>510<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>525<br />
</td>
        <td>19/14<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>540<br />
</td>
        <td>26/19<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>555<br />
</td>
        <td>11/8<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>570<br />
</td>
        <td>18/13<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>585<br />
</td>
        <td>7/5<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>600<br />
</td>
        <td>17/12, 24/17<br />
</td>
    </tr>
</table>

*based on treating 80edo as a <a class="wiki_link" href="/19-limit">19-limit</a> temperament; other approaches are possible.</body></html>