80edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>guest
**Imported revision 361115194 - Original comment: scala says otherwise**
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
The ''80 equal temperament'', often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 [[cent|cent]]s. 80et is the first equal temperament that represents the [[19-limit|19-limit]] [[Tonality_diamond|tonality diamond]] [[consistent|consistent]]ly (it barely manages to do so).
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-08-30 19:51:04 UTC</tt>.<br>
: The original revision id was <tt>361115194</tt>.<br>
: The revision comment was: <tt>scala says otherwise</tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //80 equal temperament//, often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 [[xenharmonic/cent|cent]]s. 80et is the first equal temperament that represents the [[xenharmonic/19-limit|19-limit]] [[xenharmonic/tonality diamond|tonality diamond]] [[xenharmonic/consistent|consistent]]ly (it barely manages to do so).


80 et [[xenharmonic/tempering out|tempers out]] 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125.
80 et [[tempering_out|tempers out]] 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125.


80 supports a profusion of 19-limit (and lower) rank two temperaments which have mostly not been explored. We might mention:
80 supports a profusion of 19-limit (and lower) rank two temperaments which have mostly not been explored. We might mention:


31&amp;80 &lt;&lt;7 6 15 27 -24 -23 -20 ... ||
31&amp;80 &lt;&lt;7 6 15 27 -24 -23 -20 ... ||
72&amp;80 &lt;&lt;24 30 40 24 32 24 0 ... ||
72&amp;80 &lt;&lt;24 30 40 24 32 24 0 ... ||
34&amp;80 &lt;&lt;2 -4 -50 22 16 2 -40 ... ||
34&amp;80 &lt;&lt;2 -4 -50 22 16 2 -40 ... ||
46&amp;80 &lt;&lt;2 -4 30 22 16 2 40 ... ||
46&amp;80 &lt;&lt;2 -4 30 22 16 2 40 ... ||
29&amp;80 &lt;&lt;3 34 45 33 24 -37 20 ... ||
29&amp;80 &lt;&lt;3 34 45 33 24 -37 20 ... ||
12&amp;80 &lt;&lt;4 -8 -20 -36 32 4 0 ... ||
12&amp;80 &lt;&lt;4 -8 -20 -36 32 4 0 ... ||
22&amp;80 &lt;&lt;6 -10 12 -14 -32 6 -40 ... ||
22&amp;80 &lt;&lt;6 -10 12 -14 -32 6 -40 ... ||
58&amp;80 &lt;&lt;6 -10 12 -14 -32 6 40 ... ||
58&amp;80 &lt;&lt;6 -10 12 -14 -32 6 40 ... ||
41&amp;80 &lt;&lt;7 26 25 -3 -24 -33 20 ... ||
41&amp;80 &lt;&lt;7 26 25 -3 -24 -33 20 ... ||


In each case, the numbers joined by an ampersand represent 19-limit [[xenharmonic/Patent val|patent vals]] (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.
In each case, the numbers joined by an ampersand represent 19-limit [[Patent_val|patent vals]] (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.
 
=Intervals of 80edo=
||~ degrees ||~ cents ||~ ratios* ||
|| 0 || 0 || 1/1 ||
|| 1 || 15 || 64/63 ||
|| 2 || 30 || 81/80 ||
|| 3 || 45 || 34/33, 36/35 ||
|| 4 || 60 || 26/25, 28/27, 33/32, 35/34 ||
|| 5 || 75 || 22/21, 25/24, 27/26 ||
|| 6 || 90 || 19/18, 20/19, 21/20 ||
|| 7 || 105 || 16/15, 17/16, 18/17 ||
|| 8 || 120 || 14/13, 15/14 ||
|| 9 || 135 || 13/12 ||
|| 10 || 150 || 12/11 ||
|| 11 || 165 || 11/10 ||
|| 12 || 180 || 10/9, 21/19 ||
|| 13 || 195 || 19/17 ||
|| 14 || 210 || 9/8, 17/15 ||
|| 15 || 225 || 8/7 ||
|| 16 || 240 ||  ||
|| 17 || 255 || 15/13, 22/19 ||
|| 18 || 270 || 7/6 ||
|| 19 || 285 || 13/11, 20/17 ||
|| 20 || 300 || 19/16, 25/21 ||
|| 21 || 315 || 6/5 ||
|| 22 || 330 || 17/14 ||
|| 23 || 345 || 11/9 ||
|| 24 || 360 || 16/13, 21/17 ||
|| 25 || 375 ||  ||
|| 26 || 390 || 5/4 ||
|| 27 || 405 || 19/15, 24/19 ||
|| 28 || 420 || 14/11 ||
|| 29 || 435 || 9/7 ||
|| 30 || 450 || 13/10, 22/17 ||
|| 31 || 465 || 17/13 ||
|| 32 || 480 || 21/16, 25/19 ||
|| 33 || 495 || 4/3 ||
|| 34 || 510 ||  ||
|| 35 || 525 || 19/14 ||
|| 36 || 540 || 26/19 ||
|| 37 || 555 || 11/8 ||
|| 38 || 570 || 18/13 ||
|| 39 || 585 || 7/5 ||
|| 40 || 600 || 17/12, 24/17 ||
*based on treating 80edo as a [[19-limit]] temperament; other approaches are possible.</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;80edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;80 equal temperament&lt;/em&gt;, often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;cent&lt;/a&gt;s. 80et is the first equal temperament that represents the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/19-limit"&gt;19-limit&lt;/a&gt; &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/tonality%20diamond"&gt;tonality diamond&lt;/a&gt; &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/consistent"&gt;consistent&lt;/a&gt;ly (it barely manages to do so).&lt;br /&gt;
&lt;br /&gt;
80 et &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/tempering%20out"&gt;tempers out&lt;/a&gt; 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125.&lt;br /&gt;
&lt;br /&gt;
80 supports a profusion of 19-limit (and lower) rank two temperaments which have mostly not been explored. We might mention:&lt;br /&gt;
&lt;br /&gt;
31&amp;amp;80 &amp;lt;&amp;lt;7 6 15 27 -24 -23 -20 ... ||&lt;br /&gt;
72&amp;amp;80 &amp;lt;&amp;lt;24 30 40 24 32 24 0 ... ||&lt;br /&gt;
34&amp;amp;80 &amp;lt;&amp;lt;2 -4 -50 22 16 2 -40 ... ||&lt;br /&gt;
46&amp;amp;80 &amp;lt;&amp;lt;2 -4 30 22 16 2 40 ... ||&lt;br /&gt;
29&amp;amp;80 &amp;lt;&amp;lt;3 34 45 33 24 -37 20 ... ||&lt;br /&gt;
12&amp;amp;80 &amp;lt;&amp;lt;4 -8 -20 -36 32 4 0 ... ||&lt;br /&gt;
22&amp;amp;80 &amp;lt;&amp;lt;6 -10 12 -14 -32 6 -40 ... ||&lt;br /&gt;
58&amp;amp;80 &amp;lt;&amp;lt;6 -10 12 -14 -32 6 40 ... ||&lt;br /&gt;
41&amp;amp;80 &amp;lt;&amp;lt;7 26 25 -3 -24 -33 20 ... ||&lt;br /&gt;
&lt;br /&gt;
In each case, the numbers joined by an ampersand represent 19-limit &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Patent%20val"&gt;patent vals&lt;/a&gt; (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Intervals of 80edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Intervals of 80edo&lt;/h1&gt;


&lt;table class="wiki_table"&gt;
=Intervals of 80edo=
    &lt;tr&gt;
        &lt;th&gt;degrees&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;cents&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;ratios*&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;64/63&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81/80&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;34/33, 36/35&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;26/25, 28/27, 33/32, 35/34&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;75&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22/21, 25/24, 27/26&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;90&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/18, 20/19, 21/20&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;105&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/15, 17/16, 18/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;120&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/13, 15/14&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;135&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/12&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;150&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/10&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;180&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/9, 21/19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;195&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;210&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/8, 17/15&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;225&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;240&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;255&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/13, 22/19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;270&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;285&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/11, 20/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;300&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/16, 25/21&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;315&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;330&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/14&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;345&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;360&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/13, 21/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;375&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;390&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;405&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/15, 24/19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;420&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;435&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;450&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/10, 22/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;465&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;480&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21/16, 25/19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;495&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;510&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;525&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/14&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;540&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;26/19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;555&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/8&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;570&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;585&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;600&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/12, 24/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


*based on treating 80edo as a &lt;a class="wiki_link" href="/19-limit"&gt;19-limit&lt;/a&gt; temperament; other approaches are possible.&lt;/body&gt;&lt;/html&gt;</pre></div>
{| class="wikitable"
|-
! | degrees
! | cents
! | ratios*
|-
| | 0
| | 0
| | 1/1
|-
| | 1
| | 15
| | 64/63
|-
| | 2
| | 30
| | 81/80
|-
| | 3
| | 45
| | 34/33, 36/35
|-
| | 4
| | 60
| | 26/25, 28/27, 33/32, 35/34
|-
| | 5
| | 75
| | 22/21, 25/24, 27/26
|-
| | 6
| | 90
| | 19/18, 20/19, 21/20
|-
| | 7
| | 105
| | 16/15, 17/16, 18/17
|-
| | 8
| | 120
| | 14/13, 15/14
|-
| | 9
| | 135
| | 13/12
|-
| | 10
| | 150
| | 12/11
|-
| | 11
| | 165
| | 11/10
|-
| | 12
| | 180
| | 10/9, 21/19
|-
| | 13
| | 195
| | 19/17
|-
| | 14
| | 210
| | 9/8, 17/15
|-
| | 15
| | 225
| | 8/7
|-
| | 16
| | 240
| |
|-
| | 17
| | 255
| | 15/13, 22/19
|-
| | 18
| | 270
| | 7/6
|-
| | 19
| | 285
| | 13/11, 20/17
|-
| | 20
| | 300
| | 19/16, 25/21
|-
| | 21
| | 315
| | 6/5
|-
| | 22
| | 330
| | 17/14
|-
| | 23
| | 345
| | 11/9
|-
| | 24
| | 360
| | 16/13, 21/17
|-
| | 25
| | 375
| |
|-
| | 26
| | 390
| | 5/4
|-
| | 27
| | 405
| | 19/15, 24/19
|-
| | 28
| | 420
| | 14/11
|-
| | 29
| | 435
| | 9/7
|-
| | 30
| | 450
| | 13/10, 22/17
|-
| | 31
| | 465
| | 17/13
|-
| | 32
| | 480
| | 21/16, 25/19
|-
| | 33
| | 495
| | 4/3
|-
| | 34
| | 510
| |
|-
| | 35
| | 525
| | 19/14
|-
| | 36
| | 540
| | 26/19
|-
| | 37
| | 555
| | 11/8
|-
| | 38
| | 570
| | 18/13
|-
| | 39
| | 585
| | 7/5
|-
| | 40
| | 600
| | 17/12, 24/17
|}
*based on treating 80edo as a [[19-limit|19-limit]] temperament; other approaches are possible.
[[Category:19-limit]]
[[Category:21-limit]]
[[Category:edo]]

Revision as of 00:00, 17 July 2018

The 80 equal temperament, often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 cents. 80et is the first equal temperament that represents the 19-limit tonality diamond consistently (it barely manages to do so).

80 et tempers out 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125.

80 supports a profusion of 19-limit (and lower) rank two temperaments which have mostly not been explored. We might mention:

31&80 <<7 6 15 27 -24 -23 -20 ... ||

72&80 <<24 30 40 24 32 24 0 ... ||

34&80 <<2 -4 -50 22 16 2 -40 ... ||

46&80 <<2 -4 30 22 16 2 40 ... ||

29&80 <<3 34 45 33 24 -37 20 ... ||

12&80 <<4 -8 -20 -36 32 4 0 ... ||

22&80 <<6 -10 12 -14 -32 6 -40 ... ||

58&80 <<6 -10 12 -14 -32 6 40 ... ||

41&80 <<7 26 25 -3 -24 -33 20 ... ||

In each case, the numbers joined by an ampersand represent 19-limit patent vals (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.

Intervals of 80edo

degrees cents ratios*
0 0 1/1
1 15 64/63
2 30 81/80
3 45 34/33, 36/35
4 60 26/25, 28/27, 33/32, 35/34
5 75 22/21, 25/24, 27/26
6 90 19/18, 20/19, 21/20
7 105 16/15, 17/16, 18/17
8 120 14/13, 15/14
9 135 13/12
10 150 12/11
11 165 11/10
12 180 10/9, 21/19
13 195 19/17
14 210 9/8, 17/15
15 225 8/7
16 240
17 255 15/13, 22/19
18 270 7/6
19 285 13/11, 20/17
20 300 19/16, 25/21
21 315 6/5
22 330 17/14
23 345 11/9
24 360 16/13, 21/17
25 375
26 390 5/4
27 405 19/15, 24/19
28 420 14/11
29 435 9/7
30 450 13/10, 22/17
31 465 17/13
32 480 21/16, 25/19
33 495 4/3
34 510
35 525 19/14
36 540 26/19
37 555 11/8
38 570 18/13
39 585 7/5
40 600 17/12, 24/17
  • based on treating 80edo as a 19-limit temperament; other approaches are possible.