Superpartient ratio: Difference between revisions

Fredg999 (talk | contribs)
Added delta etymology
Fredg999 (talk | contribs)
Move examples from Delta, reformat as lists instead of table (table may cause a false sense of correspondence between elements in the same column)
Line 19: Line 19:
<math>\displaystyle \prod_{i \mathop = 1}^{P \mathop - 1} \dfrac {i + 1} {i} = P</math>
<math>\displaystyle \prod_{i \mathop = 1}^{P \mathop - 1} \dfrac {i + 1} {i} = P</math>


When considering ratios, and particularly when they are ratios for [[comma]]s, it can be useful to introduce the notion of the '''degree of epimoricity''' (not to be confused with ''epimericity'' – see link below). In terms of ''p''/''q'' reduced to lowest terms it is ''p'' - ''q''. An epimoric ratio has degree 1, the 7-limit comma 245/243 degree 2, the 5-limit comma 128/125 degree 3, and so forth. [[Wikipedia:Størmer's theorem|Størmer's theorem]] can be extended to show that for each prime limit ''p'' and each degree of epimericity ''n'', there are only finitely many ''p''-limit ratios with degree of epimoricity less than or equal to ''n''.
When considering ratios, and particularly when they are ratios for [[comma]]s, it can be useful to introduce the notion of the '''degree of epimoricity''' (not to be confused with ''epimericity'' – see link below), or '''delta'''(proposed by [[Kite Giedraitis]]). In terms of ''p''/''q'' reduced to lowest terms it is ''p'' - ''q''. An epimoric ratio has degree 1, the 7-limit comma 245/243 degree 2, the 5-limit comma 128/125 degree 3, and so forth. [[Wikipedia:Størmer's theorem|Størmer's theorem]] can be extended to show that for each prime limit ''p'' and each degree of epimericity ''n'', there are only finitely many ''p''-limit ratios with degree of epimoricity less than or equal to ''n''.
 
== Examples ==
* Delta-2 (superbipartient) ratios: [[3/1]], [[5/3]], [[7/5]], [[9/7]], [[11/9]], [[13/11]], etc.
* Delta-3 (supertripartient) ratios: [[4/1]], [[5/2]], [[7/4]], [[8/5]], [[10/7]], [[11/8]], etc.
* Delta-4 (superquadripartient) ratios: [[5/1]], [[7/3]], [[9/5]], [[11/7]], [[13/9]], [[15/11]], etc.


== See also ==
== See also ==