27edo: Difference between revisions
→Music: cleanup |
→JI approximation: adopt new template, make the old table collapsed |
||
Line 353: | Line 353: | ||
=== 15-odd-limit interval mappings === | === 15-odd-limit interval mappings === | ||
The following table shows how [[15-odd-limit intervals]] are represented in 27edo. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italic''. | The following table shows how [[15-odd-limit intervals]] are represented in 27edo. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italic''. | ||
{| class="wikitable center-all" | {| class="wikitable center-all mw-collapsible mw-collapsed" | ||
|+ | |+style=white-space:nowrap| 15-odd-limit intervals by direct approximation (even if inconsistent) | ||
|- | |- | ||
! Interval, complement | ! Interval, complement | ||
! Error (abs, ¢) | ! Error (abs, ¢) | ||
! Error (rel, %) | |||
|- | |- | ||
| [[7/6]], [[12/7]] | | [[7/6]], [[12/7]] | ||
| 0.204 | | 0.204 | ||
| 0.5 | |||
|- | |- | ||
| ''[[15/11]], [[22/15]]'' | | ''[[15/11]], [[22/15]]'' | ||
| ''3.617'' | | ''3.617'' | ||
| ''8.1'' | |||
|- | |- | ||
| '''[[ | | '''[[13/8]], [[16/13]]''' | ||
| '''3.917''' | | '''3.917''' | ||
| '''8.8''' | |||
|- | |- | ||
| [[ | | [[5/3]], [[6/5]] | ||
| 4.530 | | 4.530 | ||
| 10.2 | |||
|- | |- | ||
| [[ | | [[9/5]], [[10/9]] | ||
| 4.626 | | 4.626 | ||
| 10.4 | |||
|- | |- | ||
| [[7/5]], [[10/7]] | | [[7/5]], [[10/7]] | ||
| 4.734 | | 4.734 | ||
| 10.7 | |||
|- | |- | ||
| [[ | | [[13/7]], [[14/13]] | ||
| 5.035 | | 5.035 | ||
| 11.3 | |||
|- | |- | ||
| [[13/12]], [[24/13]] | | [[13/12]], [[24/13]] | ||
| 5.239 | | 5.239 | ||
| 11.8 | |||
|- | |- | ||
| ''[[11/9]], [[18/11]]'' | | ''[[11/9]], [[18/11]]'' | ||
| ''8.148'' | | ''8.148'' | ||
| ''18.3'' | |||
|- | |- | ||
| '''[[ | | '''[[7/4]], [[8/7]]''' | ||
| '''8.952''' | | '''8.952''' | ||
| '''20.1''' | |||
|- | |- | ||
| '''[[ | | '''[[3/2]], [[4/3]]''' | ||
| '''9.156''' | | '''9.156''' | ||
| '''20.6''' | |||
|- | |- | ||
| [[9/7]], [[14/9]] | | [[9/7]], [[14/9]] | ||
| 9.360 | | 9.360 | ||
| 21.1 | |||
|- | |- | ||
| [[13/10]], [[20/13]] | | [[13/10]], [[20/13]] | ||
| 9.770 | | 9.770 | ||
| 22.0 | |||
|- | |- | ||
| ''[[11/10]], [[20/11]]'' | | ''[[11/10]], [[20/11]]'' | ||
| ''12.774'' | | ''12.774'' | ||
| ''28.7'' | |||
|- | |- | ||
| '''[[5/4]], [[8/5]]''' | | '''[[5/4]], [[8/5]]''' | ||
| '''13.686''' | | '''13.686''' | ||
| '''30.8''' | |||
|- | |- | ||
| [[15/14]], [[28/15]] | | [[15/14]], [[28/15]] | ||
| 13.891 | | 13.891 | ||
| 31.3 | |||
|- | |- | ||
| [[ | | [[13/9]], [[18/13]] | ||
| 14.395 | | 14.395 | ||
| 32.4 | |||
|- | |- | ||
| ''[[ | | ''[[11/6]], [[12/11]]'' | ||
| ''17.304'' | | ''17.304'' | ||
| ''38.9'' | |||
|- | |- | ||
| ''[[ | | ''[[11/7]], [[14/11]]'' | ||
| ''17.508'' | | ''17.508'' | ||
| ''39.4'' | |||
|- | |- | ||
| '''[[11/8]], [[16/11]]''' | | '''[[11/8]], [[16/11]]''' | ||
| '''17.985''' | | '''17.985''' | ||
| '''40.5''' | |||
|- | |- | ||
| [[9/8]], [[16/9]] | | [[9/8]], [[16/9]] | ||
| 18.312 | | 18.312 | ||
| 41.2 | |||
|- | |- | ||
| [[15/13]], [[26/15]] | | [[15/13]], [[26/15]] | ||
| 18.926 | | 18.926 | ||
| 42.6 | |||
|- | |- | ||
| ''[[ | | ''[[15/8]], [[16/15]]'' | ||
| ''21.602'' | | ''21.602'' | ||
| ''48.6'' | |||
|- | |- | ||
| [[13/11]], [[22/13]] | | [[13/11]], [[22/13]] | ||
| 21.901 | | 21.901 | ||
| 49.3 | |||
|} | |} | ||
{{15-odd-limit|27}} | |||
{ | |||
| | |||
== Regular temperament properties == | == Regular temperament properties == |