6L 2s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 565332775 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
There is only one significant (though small) harmonic entropy minimum with this MOS pattern: [[Porcupine_family#Hedgehog|hedgehog]], in which two generators are 6/5 and three are 4/3, same as porcupine.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-05 12:32:58 UTC</tt>.<br>
: The original revision id was <tt>565332775</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">There is only one significant (though small) harmonic entropy minimum with this MOS pattern: [[Porcupine family#Hedgehog|hedgehog]], in which two generators are 6/5 and three are 4/3, same as porcupine.


In addition to the true MOS, LLLsLLLs, there is also a near-MOS, LLLLsLLs, in which the period is the only interval with more than two flavors. The true MOS is always proper, because there is only one small step per period, but the near-MOS is only proper if the generator is smaller than 2\14 (which includes hedgehog).
In addition to the true MOS, LLLsLLLs, there is also a near-MOS, LLLLsLLs, in which the period is the only interval with more than two flavors. The true MOS is always proper, because there is only one small step per period, but the near-MOS is only proper if the generator is smaller than 2\14 (which includes hedgehog).
||||||~ Generator ||~  ||~  ||~  ||~ Cents ||~ Comments ||
|| 1\8 ||  ||  ||  ||  ||  || 150 ||=  ||
||  ||  || 3\22 ||  ||  ||  || 163.64 ||= Hedgehog is around here ||
||  ||  ||  ||  ||  ||  || 164.99 ||  ||
||  ||  ||  ||  || 8\58 ||  || 165.52 ||=  ||
||  ||  ||  ||  ||  || 13\94 || 165.96 ||= Golden hedgehog/echidna ||
||  ||  ||  || 5\36 ||  ||  || 166.67 ||=  ||
||  ||  ||  ||  ||  ||  || 167.72 ||  ||
||  || 2\14 ||  ||  ||  ||  || 171.43 ||= Boundary of propriety for near-MOS
Optimum rank range (L/s=2/1) for MOS ||
||  ||  ||  || 5\34 ||  ||  || 176.47 ||  ||
||  ||  ||  ||  ||  || 13\88 || 177.27 ||  ||
||  ||  ||  ||  || 8\54 ||  || 177.78 ||  ||
||  ||  ||  ||  ||  ||  || 178.15 ||= &lt;span style="display: block; text-align: center;"&gt;L/s = e&lt;/span&gt; ||
||  ||  || 3\20 ||  ||  ||  || 180 ||= L/s = 3 ||
||  ||  ||  ||  ||  ||  || 180.815 || &lt;span style="display: block; text-align: center;"&gt;L/s = pi&lt;/span&gt; ||
||  ||  ||  || 4/26 ||  ||  || 184.615 ||= L/s = 4 ||
|| 1\6 ||  ||  ||  ||  ||  || 200 ||=  ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;6L 2s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;There is only one significant (though small) harmonic entropy minimum with this MOS pattern: &lt;a class="wiki_link" href="/Porcupine%20family#Hedgehog"&gt;hedgehog&lt;/a&gt;, in which two generators are 6/5 and three are 4/3, same as porcupine.&lt;br /&gt;
&lt;br /&gt;
In addition to the true MOS, LLLsLLLs, there is also a near-MOS, LLLLsLLs, in which the period is the only interval with more than two flavors. The true MOS is always proper, because there is only one small step per period, but the near-MOS is only proper if the generator is smaller than 2\14 (which includes hedgehog).&lt;br /&gt;


{| class="wikitable"
|-
! colspan="3" | Generator
! |
! |
! |
! | Cents
! | Comments
|-
| | 1\8
| |
| |
| |
| |
| |
| | 150
| style="text-align:center;" |
|-
| |
| |
| | 3\22
| |
| |
| |
| | 163.64
| style="text-align:center;" | Hedgehog is around here
|-
| |
| |
| |
| |
| |
| |
| | 164.99
| |
|-
| |
| |
| |
| |
| | 8\58
| |
| | 165.52
| style="text-align:center;" |
|-
| |
| |
| |
| |
| |
| | 13\94
| | 165.96
| style="text-align:center;" | Golden hedgehog/echidna
|-
| |
| |
| |
| | 5\36
| |
| |
| | 166.67
| style="text-align:center;" |
|-
| |
| |
| |
| |
| |
| |
| | 167.72
| |
|-
| |
| | 2\14
| |
| |
| |
| |
| | 171.43
| style="text-align:center;" | Boundary of propriety for near-MOS


&lt;table class="wiki_table"&gt;
Optimum rank range (L/s=2/1) for MOS
    &lt;tr&gt;
|-
        &lt;th colspan="3"&gt;Generator&lt;br /&gt;
| |
&lt;/th&gt;
| |
        &lt;th&gt;&lt;br /&gt;
| |
&lt;/th&gt;
| | 5\34
        &lt;th&gt;&lt;br /&gt;
| |
&lt;/th&gt;
| |
        &lt;th&gt;&lt;br /&gt;
| | 176.47
&lt;/th&gt;
| |
        &lt;th&gt;Cents&lt;br /&gt;
|-
&lt;/th&gt;
| |
        &lt;th&gt;Comments&lt;br /&gt;
| |
&lt;/th&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| |
        &lt;td&gt;1\8&lt;br /&gt;
| | 13\88
&lt;/td&gt;
| | 177.27
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 8\54
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 177.78
&lt;/td&gt;
| |
        &lt;td&gt;150&lt;br /&gt;
|-
&lt;/td&gt;
| |
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 178.15
        &lt;td&gt;&lt;br /&gt;
| style="text-align:center;" | <span style="display: block; text-align: center;">L/s = e</span>
&lt;/td&gt;
|-
        &lt;td&gt;3\22&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 3\20
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 180
&lt;/td&gt;
| style="text-align:center;" | L/s = 3
        &lt;td&gt;163.64&lt;br /&gt;
|-
&lt;/td&gt;
| |
        &lt;td style="text-align: center;"&gt;Hedgehog is around here&lt;br /&gt;
| |
&lt;/td&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 180.815
        &lt;td&gt;&lt;br /&gt;
| | <span style="display: block; text-align: center;">L/s = pi</span>
&lt;/td&gt;
|-
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 4/26
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| | 184.615
&lt;/td&gt;
| style="text-align:center;" | L/s = 4
        &lt;td&gt;164.99&lt;br /&gt;
|-
&lt;/td&gt;
| | 1\6
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| |
    &lt;/tr&gt;
| |
    &lt;tr&gt;
| |
        &lt;td&gt;&lt;br /&gt;
| |
&lt;/td&gt;
| | 200
        &lt;td&gt;&lt;br /&gt;
| style="text-align:center;" |
&lt;/td&gt;
|}
        &lt;td&gt;&lt;br /&gt;
[[Category:mos]]
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8\58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165.52&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\94&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165.96&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Golden hedgehog/echidna&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;166.67&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;167.72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2\14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;171.43&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;Boundary of propriety for near-MOS&lt;br /&gt;
Optimum rank range (L/s=2/1) for MOS&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;176.47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\88&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;177.27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8\54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;177.78&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;178.15&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;L/s = e&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3\20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;180&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;L/s = 3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;180.815&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="display: block; text-align: center;"&gt;L/s = pi&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;184.615&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;L/s = 4&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1\6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

There is only one significant (though small) harmonic entropy minimum with this MOS pattern: hedgehog, in which two generators are 6/5 and three are 4/3, same as porcupine.

In addition to the true MOS, LLLsLLLs, there is also a near-MOS, LLLLsLLs, in which the period is the only interval with more than two flavors. The true MOS is always proper, because there is only one small step per period, but the near-MOS is only proper if the generator is smaller than 2\14 (which includes hedgehog).

Generator Cents Comments
1\8 150
3\22 163.64 Hedgehog is around here
164.99
8\58 165.52
13\94 165.96 Golden hedgehog/echidna
5\36 166.67
167.72
2\14 171.43 Boundary of propriety for near-MOS

Optimum rank range (L/s=2/1) for MOS

5\34 176.47
13\88 177.27
8\54 177.78
178.15 L/s = e
3\20 180 L/s = 3
180.815 L/s = pi
4/26 184.615 L/s = 4
1\6 200