2684edo: Difference between revisions

Eliora (talk | contribs)
brought back the fact about ruthenium, this time without the optimal patent val fact
This deserves to be described as "extremely strong". Remove section title for now as there's no other sections
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|2684}}
{{EDO intro|2684}}
== Theory ==
 
2684edo is a very strong 13-limit tuning, with a lower 13-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] than any division until we reach [[5585edo]]. It is distinctly [[consistent]] through the [[17-odd-limit]], and is both a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak and zeta integral edo]]. It is [[enfactoring|enfactored]] in the 2.3.5.13 subgroup, with the same tuning as [[1342edo]], tempering out kwazy, {{monzo| -53 10 16 }}, senior, {{monzo| -17 62 -35 }} and egads, {{monzo| -36 52 51 }}. A 13-limit [[comma basis]] is {9801/9800, 10648/10647, 140625/140608, 196625/196608, 823680/823543}; it also tempers out 123201/123200. It is less accurate, but still quite accurate in the 17-limit; a comma basis is {4914/4913, 5832/5831, 9801/9800, 10648/10647, 28561/28560, 140625/140608}.  
2684edo is an extremely strong 13-limit system, with a lower 13-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] than any division until we reach [[5585edo]]. It is distinctly [[consistent]] through the [[17-odd-limit]], and is both a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak and zeta integral edo]]. It is [[enfactoring|enfactored]] in the 2.3.5.13 subgroup, with the same tuning as [[1342edo]], tempering out kwazy, {{monzo| -53 10 16 }}, senior, {{monzo| -17 62 -35 }} and egads, {{monzo| -36 52 51 }}. A 13-limit [[comma basis]] is {9801/9800, 10648/10647, 140625/140608, 196625/196608, 823680/823543}; it also tempers out 123201/123200. It is less accurate, but still quite accurate in the 17-limit; a comma basis is {4914/4913, 5832/5831, 9801/9800, 10648/10647, 28561/28560, 140625/140608}.  


2684edo sets the septimal comma, 64/63, to an exact 1/44th of the octave (61 steps). As a corollary, it supports the period-44 [[ruthenium]] temperament.  
2684edo sets the septimal comma, 64/63, to an exact 1/44th of the octave (61 steps). As a corollary, it supports the period-44 [[ruthenium]] temperament.