612edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 316092066 - Original comment: name nearby the link to log. interval measures**
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
The ''612 equal division'' divides the octave into 612 equal parts of 1.961 cents each. It is a very strong [[5-limit|5-limit]] system, a fact noted by Bosanquet and Barbour. It tempers out the sasktel comma, |485 -306&gt;, in the 3-limit and in the 5-limit |-52 -17 34&gt;, the septendecima, |1 -27 18&gt;, the ennealimma, |-53 10 16&gt;, the kwazy comma, |54 -37 2&gt;, the monzisma, |-107 47 14&gt;, the fortune comma, and |161 -84 -12&gt;, the atom. In the 7-limit it tempers out 2401/2400 and 4375/4374, so that it supports [[Ragismic_microtemperaments#Ennealimmal|ennealimmal temperament]], and in fact provides the [[Optimal_patent_val|optimal patent val]] for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwasy comma. In the 11-limit, it tempers out 3025/3024 and 9801/9800, so that 612 supports [[Ragismic_microtemperaments#Ennealimmal|hemiennealimmal temperament]].
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2012-03-30 04:15:13 UTC</tt>.<br>
: The original revision id was <tt>316092066</tt>.<br>
: The revision comment was: <tt>name nearby the link to log. interval measures</tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //612 equal division// divides the octave into 612 equal parts of 1.961 cents each. It is a very strong [[5-limit]] system, a fact noted by Bosanquet and Barbour. It tempers out the sasktel comma, |485 -306&gt;, in the 3-limit and in the 5-limit |-52 -17 34&gt;, the septendecima, |1 -27 18&gt;, the ennealimma, |-53 10 16&gt;, the kwazy comma, |54 -37 2&gt;, the monzisma, |-107 47 14&gt;, the fortune comma, and |161 -84 -12&gt;, the atom. In the 7-limit it tempers out 2401/2400 and 4375/4374, so that it supports [[Ragismic microtemperaments#Ennealimmal|ennealimmal temperament]], and in fact provides the [[optimal patent val]] for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwasy comma. In the 11-limit, it tempers out 3025/3024 and 9801/9800, so that 612 supports [[Ragismic microtemperaments#Ennealimmal|hemiennealimmal temperament]].


The 612 division has been proposed as the logarithmic [[interval size measure]] **Skisma** (or **sk**), since one step is nearly the same size as the schisma (32805/32768). Since 612 is divisible by 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204 and 306, it can readily express the step sizes of the 12, 17, 34, 68 and 72 divisions. A table of intervals approximated by 612 can be found under [[Table of 612edo intervals]].</pre></div>
The 612 division has been proposed as the logarithmic [[Interval_size_measure|interval size measure]] '''Skisma''' (or '''sk'''), since one step is nearly the same size as the schisma (32805/32768). Since 612 is divisible by 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204 and 306, it can readily express the step sizes of the 12, 17, 34, 68 and 72 divisions. A table of intervals approximated by 612 can be found under [[Table_of_612edo_intervals|Table of 612edo intervals]].
<h4>Original HTML content:</h4>
[[Category:612edo]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;612edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;612 equal division&lt;/em&gt; divides the octave into 612 equal parts of 1.961 cents each. It is a very strong &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; system, a fact noted by Bosanquet and Barbour. It tempers out the sasktel comma, |485 -306&amp;gt;, in the 3-limit and in the 5-limit |-52 -17 34&amp;gt;, the septendecima, |1 -27 18&amp;gt;, the ennealimma, |-53 10 16&amp;gt;, the kwazy comma, |54 -37 2&amp;gt;, the monzisma, |-107 47 14&amp;gt;, the fortune comma, and |161 -84 -12&amp;gt;, the atom. In the 7-limit it tempers out 2401/2400 and 4375/4374, so that it supports &lt;a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal"&gt;ennealimmal temperament&lt;/a&gt;, and in fact provides the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwasy comma. In the 11-limit, it tempers out 3025/3024 and 9801/9800, so that 612 supports &lt;a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal"&gt;hemiennealimmal temperament&lt;/a&gt;.&lt;br /&gt;
[[Category:edo]]
&lt;br /&gt;
[[Category:ennealimmal]]
The 612 division has been proposed as the logarithmic &lt;a class="wiki_link" href="/interval%20size%20measure"&gt;interval size measure&lt;/a&gt; &lt;strong&gt;Skisma&lt;/strong&gt; (or &lt;strong&gt;sk&lt;/strong&gt;), since one step is nearly the same size as the schisma (32805/32768). Since 612 is divisible by 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204 and 306, it can readily express the step sizes of the 12, 17, 34, 68 and 72 divisions. A table of intervals approximated by 612 can be found under &lt;a class="wiki_link" href="/Table%20of%20612edo%20intervals"&gt;Table of 612edo intervals&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
[[Category:hemiennealimmal]]

Revision as of 00:00, 17 July 2018

The 612 equal division divides the octave into 612 equal parts of 1.961 cents each. It is a very strong 5-limit system, a fact noted by Bosanquet and Barbour. It tempers out the sasktel comma, |485 -306>, in the 3-limit and in the 5-limit |-52 -17 34>, the septendecima, |1 -27 18>, the ennealimma, |-53 10 16>, the kwazy comma, |54 -37 2>, the monzisma, |-107 47 14>, the fortune comma, and |161 -84 -12>, the atom. In the 7-limit it tempers out 2401/2400 and 4375/4374, so that it supports ennealimmal temperament, and in fact provides the optimal patent val for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwasy comma. In the 11-limit, it tempers out 3025/3024 and 9801/9800, so that 612 supports hemiennealimmal temperament.

The 612 division has been proposed as the logarithmic interval size measure Skisma (or sk), since one step is nearly the same size as the schisma (32805/32768). Since 612 is divisible by 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204 and 306, it can readily express the step sizes of the 12, 17, 34, 68 and 72 divisions. A table of intervals approximated by 612 can be found under Table of 612edo intervals.