55edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 237369583 - Original comment: **
Wikispaces>Osmiorisbendi
**Imported revision 240943975 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-06-17 17:18:32 UTC</tt>.<br>
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2011-07-12 01:35:47 UTC</tt>.<br>
: The original revision id was <tt>237369583</tt>.<br>
: The original revision id was <tt>240943975</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #008023; font-size: 103%;"&gt;55 tone equal temperament&lt;/span&gt;=  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #008523; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;55 tone equal temperament&lt;/span&gt;=  
//55edo// divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to [[1-6 Syntonic Comma Meantone|1/6 comma meantone]] (and is almost exactly 10/57 comma meantone.) [[http://en.wikipedia.org/wiki/Georg_Philipp_Telemann|Telemann]] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [[http://en.wikipedia.org/wiki/Leopold_Mozart|Leopold]] and [[http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart|Wolfgang Mozart]]. It can also be used for [[Meantone family|mohajira and liese]] temperaments.
 
**//55edo//** divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to [[1-6 Syntonic Comma Meantone|1/6 comma meantone]] (and is almost exactly 10/57 comma meantone.) [[http://en.wikipedia.org/wiki/Georg_Philipp_Telemann|Telemann]] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [[http://en.wikipedia.org/wiki/Leopold_Mozart|Leopold]] and [[http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart|Wolfgang Mozart]]. It can also be used for [[Meantone family|mohajira and liese]] temperaments.


5-limit commas: 81/80, &lt;31 1 -14|
5-limit commas: 81/80, &lt;31 1 -14|
Line 73: Line 74:
|| 54 || 1178,182 ||</pre></div>
|| 54 || 1178,182 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;55edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x55 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #008023; font-size: 103%;"&gt;55 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;55edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x55 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #008523; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;55 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
  &lt;em&gt;55edo&lt;/em&gt; divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to &lt;a class="wiki_link" href="/1-6%20Syntonic%20Comma%20Meantone"&gt;1/6 comma meantone&lt;/a&gt; (and is almost exactly 10/57 comma meantone.) &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Georg_Philipp_Telemann" rel="nofollow"&gt;Telemann&lt;/a&gt; suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Leopold_Mozart" rel="nofollow"&gt;Leopold&lt;/a&gt; and &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart" rel="nofollow"&gt;Wolfgang Mozart&lt;/a&gt;. It can also be used for &lt;a class="wiki_link" href="/Meantone%20family"&gt;mohajira and liese&lt;/a&gt; temperaments.&lt;br /&gt;
  &lt;br /&gt;
&lt;strong&gt;&lt;em&gt;55edo&lt;/em&gt;&lt;/strong&gt; divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to &lt;a class="wiki_link" href="/1-6%20Syntonic%20Comma%20Meantone"&gt;1/6 comma meantone&lt;/a&gt; (and is almost exactly 10/57 comma meantone.) &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Georg_Philipp_Telemann" rel="nofollow"&gt;Telemann&lt;/a&gt; suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Leopold_Mozart" rel="nofollow"&gt;Leopold&lt;/a&gt; and &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart" rel="nofollow"&gt;Wolfgang Mozart&lt;/a&gt;. It can also be used for &lt;a class="wiki_link" href="/Meantone%20family"&gt;mohajira and liese&lt;/a&gt; temperaments.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
5-limit commas: 81/80, &amp;lt;31 1 -14|&lt;br /&gt;
5-limit commas: 81/80, &amp;lt;31 1 -14|&lt;br /&gt;

Revision as of 01:35, 12 July 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Osmiorisbendi and made on 2011-07-12 01:35:47 UTC.
The original revision id was 240943975.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #008523; font-family: 'Times New Roman',Times,serif; font-size: 113%;">55 tone equal temperament</span>= 

**//55edo//** divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to [[1-6 Syntonic Comma Meantone|1/6 comma meantone]] (and is almost exactly 10/57 comma meantone.) [[http://en.wikipedia.org/wiki/Georg_Philipp_Telemann|Telemann]] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [[http://en.wikipedia.org/wiki/Leopold_Mozart|Leopold]] and [[http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart|Wolfgang Mozart]]. It can also be used for [[Meantone family|mohajira and liese]] temperaments.

5-limit commas: 81/80, <31 1 -14|

7-limit commas: 81/80, 686/675, 6144/6125

11-limit commas: 81/80, 121/120, 176/175, 686/675

==Intervals== 
|| Degrees of 55-EDO || Cents value ||
|| 0 || 0 ||
|| 1 || 21,818 ||
|| 2 || 43,636 ||
|| 3 || 65,455 ||
|| 4 || 87,273 ||
|| 5 || 109,091 ||
|| 6 || 130,909 ||
|| 7 || 152,727 ||
|| 8 || 174,545 ||
|| 9 || 196,364 ||
|| 10 || 218,182 ||
|| 11 || 240 ||
|| 12 || 261,818 ||
|| 13 || 283,636 ||
|| 14 || 305,455 ||
|| 15 || 327,273 ||
|| 16 || 349,091 ||
|| 17 || 370,909 ||
|| 18 || 392,727 ||
|| 19 || 414,545 ||
|| 20 || 436,364 ||
|| 21 || 458,182 ||
|| 22 || 480 ||
|| 23 || 501,818 ||
|| 24 || 523,636 ||
|| 25 || 545,455 ||
|| 26 || 567,273 ||
|| 27 || 589,091 ||
|| 28 || 610,909 ||
|| 29 || 632,727 ||
|| 30 || 654,545 ||
|| 31 || 676,364 ||
|| 32 || 698,182 ||
|| 33 || 720 ||
|| 34 || 741,818 ||
|| 35 || 763,636 ||
|| 36 || 785,455 ||
|| 37 || 807,273 ||
|| 38 || 829,091 ||
|| 39 || 850,909 ||
|| 40 || 872,727 ||
|| 41 || 894,545 ||
|| 42 || 916,364 ||
|| 43 || 938,182 ||
|| 44 || 960 ||
|| 45 || 981,818 ||
|| 46 || 1003,636 ||
|| 47 || 1025,455 ||
|| 48 || 1047,273 ||
|| 49 || 1069,091 ||
|| 50 || 1090,909 ||
|| 51 || 1112,727 ||
|| 52 || 1134,545 ||
|| 53 || 1156,364 ||
|| 54 || 1178,182 ||

Original HTML content:

<html><head><title>55edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x55 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #008523; font-family: 'Times New Roman',Times,serif; font-size: 113%;">55 tone equal temperament</span></h1>
 <br />
<strong><em>55edo</em></strong> divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to <a class="wiki_link" href="/1-6%20Syntonic%20Comma%20Meantone">1/6 comma meantone</a> (and is almost exactly 10/57 comma meantone.) <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Georg_Philipp_Telemann" rel="nofollow">Telemann</a> suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Leopold_Mozart" rel="nofollow">Leopold</a> and <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart" rel="nofollow">Wolfgang Mozart</a>. It can also be used for <a class="wiki_link" href="/Meantone%20family">mohajira and liese</a> temperaments.<br />
<br />
5-limit commas: 81/80, &lt;31 1 -14|<br />
<br />
7-limit commas: 81/80, 686/675, 6144/6125<br />
<br />
11-limit commas: 81/80, 121/120, 176/175, 686/675<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x55 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2>
 

<table class="wiki_table">
    <tr>
        <td>Degrees of 55-EDO<br />
</td>
        <td>Cents value<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>21,818<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>43,636<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>65,455<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>87,273<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>109,091<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>130,909<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>152,727<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>174,545<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>196,364<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>218,182<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>240<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>261,818<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>283,636<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>305,455<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>327,273<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>349,091<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>370,909<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>392,727<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>414,545<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>436,364<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>458,182<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>480<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>501,818<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>523,636<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>545,455<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>567,273<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>589,091<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>610,909<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>632,727<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>654,545<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>676,364<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>698,182<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>720<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>741,818<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>763,636<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>785,455<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>807,273<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>829,091<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>850,909<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>872,727<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>894,545<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>916,364<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>938,182<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>960<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>981,818<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>1003,636<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>1025,455<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>1047,273<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>1069,091<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>1090,909<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>1112,727<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>1134,545<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>1156,364<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>1178,182<br />
</td>
    </tr>
</table>

</body></html>