55edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 320984000 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
=<span style="color: #008523; font-family: 'Times New Roman',Times,serif; font-size: 113%;">55 tone equal temperament</span>=
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2012-04-16 07:02:46 UTC</tt>.<br>
: The original revision id was <tt>320984000</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #008523; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;55 tone equal temperament&lt;/span&gt;=  


**//55edo//** divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to [[1-6 Syntonic Comma Meantone|1/6 comma meantone]] (and is almost exactly 10/57 comma meantone.) [[http://en.wikipedia.org/wiki/Georg_Philipp_Telemann|Telemann]] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [[http://en.wikipedia.org/wiki/Leopold_Mozart|Leopold]] and [[http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart|Wolfgang Mozart]]. It can also be used for [[Meantone family|mohajira and liese]] temperaments.
'''''55edo''''' divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to [[1-6_Syntonic_Comma_Meantone|1/6 comma meantone]] (and is almost exactly 10/57 comma meantone.) [http://en.wikipedia.org/wiki/Georg_Philipp_Telemann Telemann] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [http://en.wikipedia.org/wiki/Leopold_Mozart Leopold] and [http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart Wolfgang Mozart]. It can also be used for [[Meantone_family|mohajira and liese]] temperaments.


5-limit commas: 81/80, &lt;31 1 -14|
5-limit commas: 81/80, &lt;31 1 -14|
Line 16: Line 9:
11-limit commas: 81/80, 121/120, 176/175, 686/675
11-limit commas: 81/80, 121/120, 176/175, 686/675


==Intervals==  
==Intervals==
|| Degrees of 55-EDO || Cents value ||
|| 0 || 0 ||
|| 1 || 21.818 ||
|| 2 || 43.636 ||
|| 3 || 65.455 ||
|| 4 || 87.273 ||
|| 5 || 109.091 ||
|| 6 || 130.909 ||
|| 7 || 152.727 ||
|| 8 || 174.545 ||
|| 9 || 196.364 ||
|| 10 || 218.182 ||
|| 11 || 240.000 ||
|| 12 || 261.818 ||
|| 13 || 283.636 ||
|| 14 || 305.455 ||
|| 15 || 327.273 ||
|| 16 || 349.091 ||
|| 17 || 370.909 ||
|| 18 || 392.727 ||
|| 19 || 414.545 ||
|| 20 || 436.364 ||
|| 21 || 458.182 ||
|| 22 || 480.000 ||
|| 23 || 501.818 ||
|| 24 || 523.636 ||
|| 25 || 545.455 ||
|| 26 || 567.273 ||
|| 27 || 589.091 ||
|| 28 || 610.909 ||
|| 29 || 632.727 ||
|| 30 || 654.545 ||
|| 31 || 676.364 ||
|| 32 || 698.182 ||
|| 33 || 720.000 ||
|| 34 || 741.818 ||
|| 35 || 763.636 ||
|| 36 || 785.455 ||
|| 37 || 807.273 ||
|| 38 || 829.091 ||
|| 39 || 850.909 ||
|| 40 || 872.727 ||
|| 41 || 894.545 ||
|| 42 || 916.364 ||
|| 43 || 938.182 ||
|| 44 || 960.000 ||
|| 45 || 981.818 ||
|| 46 || 1003.636 ||
|| 47 || 1025.455 ||
|| 48 || 1047.273 ||
|| 49 || 1069.091 ||
|| 50 || 1090.909 ||
|| 51 || 1112.727 ||
|| 52 || 1134.545 ||
|| 53 || 1156.364 ||
|| 54 || 1178.182 ||
|| 55 || 1200.000 ||


[[http://www.seraph.it/dep/int/AdagioKV540.mp3|Mozart - Adagio in B minor KV 540]] by [[Carlo Serafini]] ([[http://www.seraph.it/blog_files/706c4662272db7703def4d57edfcb955-119.html|blog entry]])
{| class="wikitable"
|-
| | Degrees of 55-EDO
| | Cents value
|-
| | 0
| | 0
|-
| | 1
| | 21.818
|-
| | 2
| | 43.636
|-
| | 3
| | 65.455
|-
| | 4
| | 87.273
|-
| | 5
| | 109.091
|-
| | 6
| | 130.909
|-
| | 7
| | 152.727
|-
| | 8
| | 174.545
|-
| | 9
| | 196.364
|-
| | 10
| | 218.182
|-
| | 11
| | 240.000
|-
| | 12
| | 261.818
|-
| | 13
| | 283.636
|-
| | 14
| | 305.455
|-
| | 15
| | 327.273
|-
| | 16
| | 349.091
|-
| | 17
| | 370.909
|-
| | 18
| | 392.727
|-
| | 19
| | 414.545
|-
| | 20
| | 436.364
|-
| | 21
| | 458.182
|-
| | 22
| | 480.000
|-
| | 23
| | 501.818
|-
| | 24
| | 523.636
|-
| | 25
| | 545.455
|-
| | 26
| | 567.273
|-
| | 27
| | 589.091
|-
| | 28
| | 610.909
|-
| | 29
| | 632.727
|-
| | 30
| | 654.545
|-
| | 31
| | 676.364
|-
| | 32
| | 698.182
|-
| | 33
| | 720.000
|-
| | 34
| | 741.818
|-
| | 35
| | 763.636
|-
| | 36
| | 785.455
|-
| | 37
| | 807.273
|-
| | 38
| | 829.091
|-
| | 39
| | 850.909
|-
| | 40
| | 872.727
|-
| | 41
| | 894.545
|-
| | 42
| | 916.364
|-
| | 43
| | 938.182
|-
| | 44
| | 960.000
|-
| | 45
| | 981.818
|-
| | 46
| | 1003.636
|-
| | 47
| | 1025.455
|-
| | 48
| | 1047.273
|-
| | 49
| | 1069.091
|-
| | 50
| | 1090.909
|-
| | 51
| | 1112.727
|-
| | 52
| | 1134.545
|-
| | 53
| | 1156.364
|-
| | 54
| | 1178.182
|-
| | 55
| | 1200.000
|}


[[http://tonalsoft.com/monzo/55edo/55edo.aspx|"Mozart's tuning: 55edo"]] (containing another listening example) in the [[tonalsoft encyclopedia]]</pre></div>
[http://www.seraph.it/dep/int/AdagioKV540.mp3 Mozart - Adagio in B minor KV 540] by [[Carlo_Serafini|Carlo Serafini]] ([http://www.seraph.it/blog_files/706c4662272db7703def4d57edfcb955-119.html blog entry])
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;55edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x55 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #008523; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;55 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
&lt;br /&gt;
&lt;strong&gt;&lt;em&gt;55edo&lt;/em&gt;&lt;/strong&gt; divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to &lt;a class="wiki_link" href="/1-6%20Syntonic%20Comma%20Meantone"&gt;1/6 comma meantone&lt;/a&gt; (and is almost exactly 10/57 comma meantone.) &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Georg_Philipp_Telemann" rel="nofollow"&gt;Telemann&lt;/a&gt; suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Leopold_Mozart" rel="nofollow"&gt;Leopold&lt;/a&gt; and &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart" rel="nofollow"&gt;Wolfgang Mozart&lt;/a&gt;. It can also be used for &lt;a class="wiki_link" href="/Meantone%20family"&gt;mohajira and liese&lt;/a&gt; temperaments.&lt;br /&gt;
&lt;br /&gt;
5-limit commas: 81/80, &amp;lt;31 1 -14|&lt;br /&gt;
&lt;br /&gt;
7-limit commas: 81/80, 686/675, 6144/6125&lt;br /&gt;
&lt;br /&gt;
11-limit commas: 81/80, 121/120, 176/175, 686/675&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x55 tone equal temperament-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h2&gt;


&lt;table class="wiki_table"&gt;
[http://tonalsoft.com/monzo/55edo/55edo.aspx "Mozart's tuning: 55edo"] (containing another listening example) in the [[tonalsoft_encyclopedia|tonalsoft encyclopedia]]      [[Category:55edo]]
    &lt;tr&gt;
[[Category:edo]]
        &lt;td&gt;Degrees of 55-EDO&lt;br /&gt;
[[Category:intervals]]
&lt;/td&gt;
[[Category:meantone]]
        &lt;td&gt;Cents value&lt;br /&gt;
[[Category:theory]]
&lt;/td&gt;
[[Category:todo:unify_precision]]
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21.818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;43.636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;65.455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;87.273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;109.091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;130.909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;152.727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;174.545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;196.364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;218.182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;240.000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;261.818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;283.636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;305.455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;327.273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;349.091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;370.909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;392.727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;414.545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;436.364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;458.182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;480.000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;501.818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;523.636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;545.455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;567.273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;589.091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;610.909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;632.727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;654.545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;676.364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;698.182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;720.000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;741.818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;763.636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;785.455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;807.273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;829.091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;850.909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;872.727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;894.545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;916.364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;938.182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;960.000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;981.818&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1003.636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1025.455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1047.273&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1069.091&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1090.909&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1112.727&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1134.545&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1156.364&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1178.182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200.000&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.seraph.it/dep/int/AdagioKV540.mp3" rel="nofollow"&gt;Mozart - Adagio in B minor KV 540&lt;/a&gt; by &lt;a class="wiki_link" href="/Carlo%20Serafini"&gt;Carlo Serafini&lt;/a&gt; (&lt;a class="wiki_link_ext" href="http://www.seraph.it/blog_files/706c4662272db7703def4d57edfcb955-119.html" rel="nofollow"&gt;blog entry&lt;/a&gt;)&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://tonalsoft.com/monzo/55edo/55edo.aspx" rel="nofollow"&gt;&amp;quot;Mozart's tuning: 55edo&amp;quot;&lt;/a&gt; (containing another listening example) in the &lt;a class="wiki_link" href="/tonalsoft%20encyclopedia"&gt;tonalsoft encyclopedia&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

55 tone equal temperament

55edo divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) Telemann suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by Leopold and Wolfgang Mozart. It can also be used for mohajira and liese temperaments.

5-limit commas: 81/80, <31 1 -14|

7-limit commas: 81/80, 686/675, 6144/6125

11-limit commas: 81/80, 121/120, 176/175, 686/675

Intervals

Degrees of 55-EDO Cents value
0 0
1 21.818
2 43.636
3 65.455
4 87.273
5 109.091
6 130.909
7 152.727
8 174.545
9 196.364
10 218.182
11 240.000
12 261.818
13 283.636
14 305.455
15 327.273
16 349.091
17 370.909
18 392.727
19 414.545
20 436.364
21 458.182
22 480.000
23 501.818
24 523.636
25 545.455
26 567.273
27 589.091
28 610.909
29 632.727
30 654.545
31 676.364
32 698.182
33 720.000
34 741.818
35 763.636
36 785.455
37 807.273
38 829.091
39 850.909
40 872.727
41 894.545
42 916.364
43 938.182
44 960.000
45 981.818
46 1003.636
47 1025.455
48 1047.273
49 1069.091
50 1090.909
51 1112.727
52 1134.545
53 1156.364
54 1178.182
55 1200.000

Mozart - Adagio in B minor KV 540 by Carlo Serafini (blog entry)

"Mozart's tuning: 55edo" (containing another listening example) in the tonalsoft encyclopedia