50edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 139438037 - Original comment: **
Wikispaces>Osmiorisbendi
**Imported revision 211588432 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2010-05-04 15:44:18 UTC</tt>.<br>
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2011-03-17 19:03:43 UTC</tt>.<br>
: The original revision id was <tt>139438037</tt>.<br>
: The original revision id was <tt>211588432</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 11: Line 11:
[[http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html|More information about Robert Smith's temperament]]
[[http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html|More information about Robert Smith's temperament]]


== Relations ==
==Relations==  
The 50-edo system is related to [[7edo]], [[12edo]], [[19edo]], [[31edo]] as the next approximation to the "Golden Tone System" ([[Das Goldene Tonsystem]]) of Thorvald Kornerup.</pre></div>
The 50-edo system is related to [[7edo]], [[12edo]], [[19edo]], [[31edo]] as the next approximation to the "Golden Tone System" ([[Das Goldene Tonsystem]]) of Thorvald Kornerup.
 
==Intervals==
 
|| Degrees of 50-EDO || Cents value ||
|| 0 || 0 ||
|| 1 || 24 ||
|| 2 || 48 ||
|| 3 || 72 ||
|| 4 || 96 ||
|| 5 || 120 ||
|| 6 || 144 ||
|| 7 || 168 ||
|| 8 || 192 ||
|| 9 || 216 ||
|| 10 || 240 ||
|| 11 || 264 ||
|| 12 || 288 ||
|| 13 || 312 ||
|| 14 || 336 ||
|| 15 || 360 ||
|| 16 || 384 ||
|| 17 || 408 ||
|| 18 || 432 ||
|| 19 || 456 ||
|| 20 || 480 ||
|| 21 || 504 ||
|| 22 || 528 ||
|| 23 || 552 ||
|| 24 || 576 ||
|| 25 || 600 ||
|| 26 || 624 ||
|| 27 || 648 ||
|| 28 || 672 ||
|| 29 || 696 ||
|| 30 || 720 ||
|| 31 || 744 ||
|| 32 || 768 ||
|| 33 || 792 ||
|| 34 || 816 ||
|| 35 || 840 ||
|| 36 || 864 ||
|| 37 || 888 ||
|| 38 || 912 ||
|| 39 || 936 ||
|| 40 || 960 ||
|| 41 || 984 ||
|| 42 || 1008 ||
|| 43 || 1032 ||
|| 44 || 1056 ||
|| 45 || 1080 ||
|| 46 || 1104 ||
|| 47 || 1128 ||
|| 48 || 1152 ||
|| 49 || 1176 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;50edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;In &amp;quot;Harmonics or the Philosophy of Musical Sounds&amp;quot; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;50edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;In &amp;quot;Harmonics or the Philosophy of Musical Sounds&amp;quot; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word.&lt;br /&gt;
Line 19: Line 73:
&lt;a class="wiki_link_ext" href="http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html" rel="nofollow"&gt;More information about Robert Smith's temperament&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html" rel="nofollow"&gt;More information about Robert Smith's temperament&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Relations"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; Relations &lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Relations"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Relations&lt;/h2&gt;
The 50-edo system is related to &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;, &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; as the next approximation to the &amp;quot;Golden Tone System&amp;quot; (&lt;a class="wiki_link" href="/Das%20Goldene%20Tonsystem"&gt;Das Goldene Tonsystem&lt;/a&gt;) of Thorvald Kornerup.&lt;/body&gt;&lt;/html&gt;</pre></div>
The 50-edo system is related to &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;, &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;, &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; as the next approximation to the &amp;quot;Golden Tone System&amp;quot; (&lt;a class="wiki_link" href="/Das%20Goldene%20Tonsystem"&gt;Das Goldene Tonsystem&lt;/a&gt;) of Thorvald Kornerup.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Intervals&lt;/h2&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Degrees of 50-EDO&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Cents value&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;72&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;96&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;120&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;144&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;168&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;192&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;216&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;240&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;264&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;288&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;312&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;336&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;360&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;384&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;408&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;432&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;456&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;480&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;504&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;528&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;552&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;576&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;600&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;624&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;648&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;672&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;696&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;720&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;744&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;768&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;792&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;816&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;840&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;864&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;888&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;912&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;936&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;960&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;984&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1008&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1032&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1056&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1080&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1104&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1128&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1152&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1176&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 19:03, 17 March 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Osmiorisbendi and made on 2011-03-17 19:03:43 UTC.
The original revision id was 211588432.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

In "Harmonics or the Philosophy of Musical Sounds" (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word.

[[http://www.archive.org/details/harmonicsorphilo00smit|Robert Smith's book online]]
[[http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html|More information about Robert Smith's temperament]]

==Relations== 
The 50-edo system is related to [[7edo]], [[12edo]], [[19edo]], [[31edo]] as the next approximation to the "Golden Tone System" ([[Das Goldene Tonsystem]]) of Thorvald Kornerup.

==Intervals== 

|| Degrees of 50-EDO || Cents value ||
|| 0 || 0 ||
|| 1 || 24 ||
|| 2 || 48 ||
|| 3 || 72 ||
|| 4 || 96 ||
|| 5 || 120 ||
|| 6 || 144 ||
|| 7 || 168 ||
|| 8 || 192 ||
|| 9 || 216 ||
|| 10 || 240 ||
|| 11 || 264 ||
|| 12 || 288 ||
|| 13 || 312 ||
|| 14 || 336 ||
|| 15 || 360 ||
|| 16 || 384 ||
|| 17 || 408 ||
|| 18 || 432 ||
|| 19 || 456 ||
|| 20 || 480 ||
|| 21 || 504 ||
|| 22 || 528 ||
|| 23 || 552 ||
|| 24 || 576 ||
|| 25 || 600 ||
|| 26 || 624 ||
|| 27 || 648 ||
|| 28 || 672 ||
|| 29 || 696 ||
|| 30 || 720 ||
|| 31 || 744 ||
|| 32 || 768 ||
|| 33 || 792 ||
|| 34 || 816 ||
|| 35 || 840 ||
|| 36 || 864 ||
|| 37 || 888 ||
|| 38 || 912 ||
|| 39 || 936 ||
|| 40 || 960 ||
|| 41 || 984 ||
|| 42 || 1008 ||
|| 43 || 1032 ||
|| 44 || 1056 ||
|| 45 || 1080 ||
|| 46 || 1104 ||
|| 47 || 1128 ||
|| 48 || 1152 ||
|| 49 || 1176 ||

Original HTML content:

<html><head><title>50edo</title></head><body>In &quot;Harmonics or the Philosophy of Musical Sounds&quot; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word.<br />
<br />
<a class="wiki_link_ext" href="http://www.archive.org/details/harmonicsorphilo00smit" rel="nofollow">Robert Smith's book online</a><br />
<a class="wiki_link_ext" href="http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html" rel="nofollow">More information about Robert Smith's temperament</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Relations"></a><!-- ws:end:WikiTextHeadingRule:0 -->Relations</h2>
 The 50-edo system is related to <a class="wiki_link" href="/7edo">7edo</a>, <a class="wiki_link" href="/12edo">12edo</a>, <a class="wiki_link" href="/19edo">19edo</a>, <a class="wiki_link" href="/31edo">31edo</a> as the next approximation to the &quot;Golden Tone System&quot; (<a class="wiki_link" href="/Das%20Goldene%20Tonsystem">Das Goldene Tonsystem</a>) of Thorvald Kornerup.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2>
 <br />


<table class="wiki_table">
    <tr>
        <td>Degrees of 50-EDO<br />
</td>
        <td>Cents value<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>24<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>48<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>72<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>96<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>120<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>144<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>168<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>192<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>216<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>240<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>264<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>288<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>312<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>336<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>360<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>384<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>408<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>432<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>456<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>480<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>504<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>528<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>552<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>576<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>600<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>624<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>648<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>672<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>696<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>720<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>744<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>768<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>792<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>816<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>840<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>864<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>888<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>912<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>936<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>960<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>984<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>1008<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>1032<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>1056<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>1080<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>1104<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>1128<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>1152<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>1176<br />
</td>
    </tr>
</table>

</body></html>