50edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>jdfreivald **Imported revision 342317330 - Original comment: ** |
Wikispaces>jdfreivald **Imported revision 342319376 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:jdfreivald|jdfreivald]] and made on <tt>2012-06- | : This revision was by author [[User:jdfreivald|jdfreivald]] and made on <tt>2012-06-04 00:04:02 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>342319376</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 74: | Line 74: | ||
|| | -4 4 -1 > ||> 21.51 ||= 81/80 || Syntonic comma || Didymus comma || | || | -4 4 -1 > ||> 21.51 ||= 81/80 || Syntonic comma || Didymus comma || | ||
|| | -8 8 -2 > ||> 43.01 ||= 6561/6400 || Mathieu superdiesis || || | || | -8 8 -2 > ||> 43.01 ||= 6561/6400 || Mathieu superdiesis || || | ||
|| | 23 6 -14 > ||> 3.34 ||= | || | 23 6 -14 > ||> 3.34 ||= 6115295232/6103515625 || Vishnu comma || || | ||
|| | 1 2 -3 1 > ||> 13.79 ||= 126/125 || Starling comma || Small septimal comma || | || | 1 2 -3 1 > ||> 13.79 ||= 126/125 || Starling comma || Small septimal comma || | ||
|| | -5 2 2 -1 > ||> 7.71 ||= 225/224 || Septimal kleisma || || | || | -5 2 2 -1 > ||> 7.71 ||= 225/224 || Septimal kleisma || || | ||
Line 97: | Line 97: | ||
[[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3|Twinkle canon – 50 edo]] by [[http://soonlabel.com/xenharmonic/archives/573|Claudi Meneghin]] | [[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3|Twinkle canon – 50 edo]] by [[http://soonlabel.com/xenharmonic/archives/573|Claudi Meneghin]] | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -4 4 -1 > 21.51 81/80 syntonic comma, Didymus comma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -4 4 -1 > 21.51 81/80 syntonic comma, Didymus comma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -8 8 -2 > 43.01 6561/6400 Mathieu superdiesis</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -8 8 -2 > 43.01 6561/6400 Mathieu superdiesis</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 23 6 -14 > 3.34 1212717/1210381 Vishnu comma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 23 6 -14 > 3.34 1212717/1210381 Vishnu comma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 1 2 -3 1 > 13.79 126/125 small septimal comma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 1 2 -3 1 > 13.79 126/125 small septimal comma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -5 2 2 -1 > 7.71 225/224 septimal kleisma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -5 2 2 -1 > 7.71 225/224 septimal kleisma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 6 0 -5 2 > 6.08 3136/3125 middle second comma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 6 0 -5 2 > 6.08 3136/3125 middle second comma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -6 -8 2 5 > 1.12 420175/419904</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -6 -8 2 5 > 1.12 420175/419904</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> |-11 2 7 -3 > 1.63 703125/702464</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">|-11 2 7 -3 > 1.63 703125/702464</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 11 -10 -10 10 > 5.57 6772805/6751042</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 11 -10 -10 10 > 5.57 6772805/6751042</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> |-13 10 0 -1 > 50.72 59049/57344 Harrison's comma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">|-13 10 0 -1 > 50.72 59049/57344 Harrison's comma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 2 3 1 -2 -1 > 3.21 540/539 Swets' comma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 2 3 1 -2 -1 > 3.21 540/539 Swets' comma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -3 4 -2 -2 2 > 0.18 9801/9800 kalisma, Gauss' comma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -3 4 -2 -2 2 > 0.18 9801/9800 kalisma, Gauss' comma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 5 -1 3 0 -3 > 3.03 4000/3993 undecimal schisma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 5 -1 3 0 -3 > 3.03 4000/3993 undecimal schisma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -7 -1 1 1 1 > 4.50 385/384 undecimal kleisma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -7 -1 1 1 1 > 4.50 385/384 undecimal kleisma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 2 -1 0 1 -2 1 > 4.76 364/363</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 2 -1 0 1 -2 1 > 4.76 364/363</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 2 3 0 -1 1 -2 > 7.30 1188/1183 Kestrel Comma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 2 3 0 -1 1 -2 > 7.30 1188/1183 Kestrel Comma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 3 0 2 0 1 -3 > 2.36 2200/2197 Parizek comma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 3 0 2 0 1 -3 > 2.36 2200/2197 Parizek comma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -3 1 1 1 0 -1 > 16.57 105/104 small tridecimal comma</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -3 1 1 1 0 -1 > 16.57 105/104 small tridecimal comma</span> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 3 -2 0 1 -1 -1 0 0 1 > 1.34 1288/1287 triaphonisma</span></pre></div> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 3 -2 0 1 -1 -1 0 0 1 > 1.34 1288/1287 triaphonisma</span><span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 2963px; width: 1px;"> | ||
|| 6115295232.00 || | |||
</span></pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>50edo</title></head><body><em>50edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 50 equal parts of precisely 24 <a class="wiki_link" href="/cent">cent</a>s each. In the <a class="wiki_link" href="/5-limit">5-limit</a>, it tempers out 81/80, making it a <a class="wiki_link" href="/meantone">meantone</a> system, and in that capacity has historically has drawn some notice. In &quot;Harmonics or the Philosophy of Musical Sounds&quot; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the <a class="wiki_link" href="/Target%20tunings">least squares</a> tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While <a class="wiki_link" href="/31edo">31edo</a> extends meantone with a <a class="wiki_link" href="/7_4">7/4</a> which is nearly pure, 50 has a flat 7/4 but both <a class="wiki_link" href="/11_8">11/8</a> and <a class="wiki_link" href="/13_8">13/8</a> are nearly pure.<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>50edo</title></head><body><em>50edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 50 equal parts of precisely 24 <a class="wiki_link" href="/cent">cent</a>s each. In the <a class="wiki_link" href="/5-limit">5-limit</a>, it tempers out 81/80, making it a <a class="wiki_link" href="/meantone">meantone</a> system, and in that capacity has historically has drawn some notice. In &quot;Harmonics or the Philosophy of Musical Sounds&quot; (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the <a class="wiki_link" href="/Target%20tunings">least squares</a> tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While <a class="wiki_link" href="/31edo">31edo</a> extends meantone with a <a class="wiki_link" href="/7_4">7/4</a> which is nearly pure, 50 has a flat 7/4 but both <a class="wiki_link" href="/11_8">11/8</a> and <a class="wiki_link" href="/13_8">13/8</a> are nearly pure.<br /> | ||
Line 485: | Line 487: | ||
<td style="text-align: right;">3.34<br /> | <td style="text-align: right;">3.34<br /> | ||
</td> | </td> | ||
<td style="text-align: center;"> | <td style="text-align: center;">6115295232/6103515625<br /> | ||
</td> | </td> | ||
<td>Vishnu comma<br /> | <td>Vishnu comma<br /> | ||
Line 727: | Line 729: | ||
<a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3" rel="nofollow">Twinkle canon – 50 edo</a> by <a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/573" rel="nofollow">Claudi Meneghin</a><br /> | <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3" rel="nofollow">Twinkle canon – 50 edo</a> by <a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/573" rel="nofollow">Claudi Meneghin</a><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -4 4 -1 &gt; 21.51 81/80 syntonic comma, Didymus comma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -4 4 -1 &gt; 21.51 81/80 syntonic comma, Didymus comma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -8 8 -2 &gt; 43.01 6561/6400 Mathieu superdiesis</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -8 8 -2 &gt; 43.01 6561/6400 Mathieu superdiesis</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 23 6 -14 &gt; 3.34 1212717/1210381 Vishnu comma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 23 6 -14 &gt; 3.34 1212717/1210381 Vishnu comma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 1 2 -3 1 &gt; 13.79 126/125 small septimal comma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 1 2 -3 1 &gt; 13.79 126/125 small septimal comma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -5 2 2 -1 &gt; 7.71 225/224 septimal kleisma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -5 2 2 -1 &gt; 7.71 225/224 septimal kleisma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 6 0 -5 2 &gt; 6.08 3136/3125 middle second comma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 6 0 -5 2 &gt; 6.08 3136/3125 middle second comma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -6 -8 2 5 &gt; 1.12 420175/419904</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -6 -8 2 5 &gt; 1.12 420175/419904</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> |-11 2 7 -3 &gt; 1.63 703125/702464</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">|-11 2 7 -3 &gt; 1.63 703125/702464</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 11 -10 -10 10 &gt; 5.57 6772805/6751042</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 11 -10 -10 10 &gt; 5.57 6772805/6751042</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> |-13 10 0 -1 &gt; 50.72 59049/57344 Harrison's comma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">|-13 10 0 -1 &gt; 50.72 59049/57344 Harrison's comma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 2 3 1 -2 -1 &gt; 3.21 540/539 Swets' comma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 2 3 1 -2 -1 &gt; 3.21 540/539 Swets' comma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -3 4 -2 -2 2 &gt; 0.18 9801/9800 kalisma, Gauss' comma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -3 4 -2 -2 2 &gt; 0.18 9801/9800 kalisma, Gauss' comma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 5 -1 3 0 -3 &gt; 3.03 4000/3993 undecimal schisma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 5 -1 3 0 -3 &gt; 3.03 4000/3993 undecimal schisma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -7 -1 1 1 1 &gt; 4.50 385/384 undecimal kleisma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -7 -1 1 1 1 &gt; 4.50 385/384 undecimal kleisma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 2 -1 0 1 -2 1 &gt; 4.76 364/363</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 2 -1 0 1 -2 1 &gt; 4.76 364/363</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 2 3 0 -1 1 -2 &gt; 7.30 1188/1183 Kestrel Comma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 2 3 0 -1 1 -2 &gt; 7.30 1188/1183 Kestrel Comma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 3 0 2 0 1 -3 &gt; 2.36 2200/2197 Parizek comma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 3 0 2 0 1 -3 &gt; 2.36 2200/2197 Parizek comma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | -3 1 1 1 0 -1 &gt; 16.57 105/104 small tridecimal comma</span><br /> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -3 1 1 1 0 -1 &gt; 16.57 105/104 small tridecimal comma</span><br /> | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;"> | 3 -2 0 1 -1 -1 0 0 1 &gt; 1.34 1288/1287 triaphonisma</span></body></html></pre></div> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 3 -2 0 1 -1 -1 0 0 1 &gt; 1.34 1288/1287 triaphonisma</span><span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 2963px; width: 1px;"><br /> | ||
<table class="wiki_table"> | |||
<tr> | |||
<td>6115295232.00<br /> | |||
</td> | |||
</tr> | |||
</table> | |||
</span></body></html></pre></div> |
Revision as of 00:04, 4 June 2012
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author jdfreivald and made on 2012-06-04 00:04:02 UTC.
- The original revision id was 342319376.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
//50edo// divides the [[octave]] into 50 equal parts of precisely 24 [[cent]]s each. In the [[5-limit]], it tempers out 81/80, making it a [[meantone]] system, and in that capacity has historically has drawn some notice. In "Harmonics or the Philosophy of Musical Sounds" (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the [[Target tunings|least squares]] tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While [[31edo]] extends meantone with a [[7_4|7/4]] which is nearly pure, 50 has a flat 7/4 but both [[11_8|11/8]] and [[13_8|13/8]] are nearly pure. 50 tempers out 126/125 in the [[7-limit]], indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the [[11-limit]] and 105/104, 144/143 and 196/195 in the [[13-limit]], and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&50 temperament. It is also the unique equal temperament tempering out both 81/80 and the [[vishnuzma]], 6115295232/6103515625 = |23 6 -14>, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth. [[http://www.archive.org/details/harmonicsorphilo00smit|Robert Smith's book online]] [[http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html|More information about Robert Smith's temperament]] ==Relations== The 50-edo system is related to [[7edo]], [[12edo]], [[19edo]], [[31edo]] as the next approximation to the "Golden Tone System" ([[Das Goldene Tonsystem]]) of Thorvald Kornerup. ==Intervals== || Degrees of 50-EDO || Cents value || || 0 || 0 || || 1 || 24 || || 2 || 48 || || 3 || 72 || || 4 || 96 || || 5 || 120 || || 6 || 144 || || 7 || 168 || || 8 || 192 || || 9 || 216 || || 10 || 240 || || 11 || 264 || || 12 || 288 || || 13 || 312 || || 14 || 336 || || 15 || 360 || || 16 || 384 || || 17 || 408 || || 18 || 432 || || 19 || 456 || || 20 || 480 || || 21 || 504 || || 22 || 528 || || 23 || 552 || || 24 || 576 || || 25 || 600 || || 26 || 624 || || 27 || 648 || || 28 || 672 || || 29 || 696 || || 30 || 720 || || 31 || 744 || || 32 || 768 || || 33 || 792 || || 34 || 816 || || 35 || 840 || || 36 || 864 || || 37 || 888 || || 38 || 912 || || 39 || 936 || || 40 || 960 || || 41 || 984 || || 42 || 1008 || || 43 || 1032 || || 44 || 1056 || || 45 || 1080 || || 46 || 1104 || || 47 || 1128 || || 48 || 1152 || || 49 || 1176 || ==Commas== 50 EDO tempers out the following commas. (Note: This assumes the val < 50 79 116 140 173 185 204 212 226 |, comma values rounded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2. ||~ ===In bra format=== ||~ ===In cents=== ||~ ===Ratio=== ||~ ===Name 1=== ||~ ===Name2=== || || | -4 4 -1 > ||> 21.51 ||= 81/80 || Syntonic comma || Didymus comma || || | -8 8 -2 > ||> 43.01 ||= 6561/6400 || Mathieu superdiesis || || || | 23 6 -14 > ||> 3.34 ||= 6115295232/6103515625 || Vishnu comma || || || | 1 2 -3 1 > ||> 13.79 ||= 126/125 || Starling comma || Small septimal comma || || | -5 2 2 -1 > ||> 7.71 ||= 225/224 || Septimal kleisma || || || | 6 0 -5 2 > ||> 6.08 ||= 3136/3125 || Middle second comma || || || | -6 -8 2 5 > ||> 1.12 ||= 420175/419904 || || || || |-11 2 7 -3 > ||> 1.63 ||= 703125/702464 || || || || | 11 -10 -10 10 > ||> 5.57 ||= 6772805/6751042 || || || || |-13 10 0 -1 > ||> 50.72 ||= 59049/57344 || Harrison's comma || || || | 2 3 1 -2 -1 > ||> 3.21 ||= 540/539 || Swets' comma || Swetisma || || | -3 4 -2 -2 2 > ||> 0.18 ||= 9801/9800 || Kalisma || Gauss' comma || || | 5 -1 3 0 -3 > ||> 3.03 ||= 4000/3993 || Wizardharry || Undecimal schisma || || | -7 -1 1 1 1 > ||> 4.50 ||= 385/384 || Keenanisma || Undecimal kleisma || || | -1 0 1 2 -2 > ||> 21.33 ||= 245/242 || || || || | 2 -1 0 1 -2 1 > ||> 4.76 ||= 364/363 || Gentle comma || || || | 2 -1 -1 2 0 -1 > ||> 8.86 ||= 196/195 || || || || | 2 3 0 -1 1 -2 > ||> 7.30 ||= 1188/1183 || Kestrel Comma || || || | 3 0 2 0 1 -3 > ||> 2.36 ||= 2200/2197 || Petrma || Parizek comma || || | -3 1 1 1 0 -1 > ||> 16.57 ||= 105/104 || Animist comma || Small tridecimal comma || || || | 4 2 0 0 -1 -1 > ||> 12.06 ||= 144/143 || || || || | 3 -2 0 1 -1 -1 0 0 1 > ||> 1.34 ||= 1288/1287 || Triaphonisma || || [[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3|Twinkle canon – 50 edo]] by [[http://soonlabel.com/xenharmonic/archives/573|Claudi Meneghin]] <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -4 4 -1 > 21.51 81/80 syntonic comma, Didymus comma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -8 8 -2 > 43.01 6561/6400 Mathieu superdiesis</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 23 6 -14 > 3.34 1212717/1210381 Vishnu comma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 1 2 -3 1 > 13.79 126/125 small septimal comma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -5 2 2 -1 > 7.71 225/224 septimal kleisma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 6 0 -5 2 > 6.08 3136/3125 middle second comma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -6 -8 2 5 > 1.12 420175/419904</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">|-11 2 7 -3 > 1.63 703125/702464</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 11 -10 -10 10 > 5.57 6772805/6751042</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">|-13 10 0 -1 > 50.72 59049/57344 Harrison's comma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 2 3 1 -2 -1 > 3.21 540/539 Swets' comma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -3 4 -2 -2 2 > 0.18 9801/9800 kalisma, Gauss' comma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 5 -1 3 0 -3 > 3.03 4000/3993 undecimal schisma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -7 -1 1 1 1 > 4.50 385/384 undecimal kleisma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 2 -1 0 1 -2 1 > 4.76 364/363</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 2 3 0 -1 1 -2 > 7.30 1188/1183 Kestrel Comma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 3 0 2 0 1 -3 > 2.36 2200/2197 Parizek comma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -3 1 1 1 0 -1 > 16.57 105/104 small tridecimal comma</span> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 3 -2 0 1 -1 -1 0 0 1 > 1.34 1288/1287 triaphonisma</span><span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 2963px; width: 1px;"> || 6115295232.00 || </span>
Original HTML content:
<html><head><title>50edo</title></head><body><em>50edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 50 equal parts of precisely 24 <a class="wiki_link" href="/cent">cent</a>s each. In the <a class="wiki_link" href="/5-limit">5-limit</a>, it tempers out 81/80, making it a <a class="wiki_link" href="/meantone">meantone</a> system, and in that capacity has historically has drawn some notice. In "Harmonics or the Philosophy of Musical Sounds" (1759) by Robert Smith, a musical temperament is described where the octave is divided into 50 equal parts - 50edo, in one word. Later W. S. B. Woolhouse noted it was fairly close to the <a class="wiki_link" href="/Target%20tunings">least squares</a> tuning for 5-limit meantone. 50, however, is especially interesting from a higher limit point of view. While <a class="wiki_link" href="/31edo">31edo</a> extends meantone with a <a class="wiki_link" href="/7_4">7/4</a> which is nearly pure, 50 has a flat 7/4 but both <a class="wiki_link" href="/11_8">11/8</a> and <a class="wiki_link" href="/13_8">13/8</a> are nearly pure.<br /> <br /> 50 tempers out 126/125 in the <a class="wiki_link" href="/7-limit">7-limit</a>, indicating it supports septimal meantone; 245/242, 385/384 and 540/539 in the <a class="wiki_link" href="/11-limit">11-limit</a> and 105/104, 144/143 and 196/195 in the <a class="wiki_link" href="/13-limit">13-limit</a>, and can be used for even higher limits. Aside from meantone and its extension meanpop, it can be used to advantage for the 15&50 temperament. It is also the unique equal temperament tempering out both 81/80 and the <a class="wiki_link" href="/vishnuzma">vishnuzma</a>, 6115295232/6103515625 = |23 6 -14>, so that in 50et seven chromatic semitones are a perfect fourth. In 12et by comparison this gives a fifth, in 31et a doubly diminished fifth, and in 19et a diminished fourth.<br /> <br /> <a class="wiki_link_ext" href="http://www.archive.org/details/harmonicsorphilo00smit" rel="nofollow">Robert Smith's book online</a><br /> <a class="wiki_link_ext" href="http://www.music.ed.ac.uk/russell/conference/robertsmithkirckman.html" rel="nofollow">More information about Robert Smith's temperament</a><br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h2> --><h2 id="toc0"><a name="x-Relations"></a><!-- ws:end:WikiTextHeadingRule:0 -->Relations</h2> The 50-edo system is related to <a class="wiki_link" href="/7edo">7edo</a>, <a class="wiki_link" href="/12edo">12edo</a>, <a class="wiki_link" href="/19edo">19edo</a>, <a class="wiki_link" href="/31edo">31edo</a> as the next approximation to the "Golden Tone System" (<a class="wiki_link" href="/Das%20Goldene%20Tonsystem">Das Goldene Tonsystem</a>) of Thorvald Kornerup.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2> <table class="wiki_table"> <tr> <td>Degrees of 50-EDO<br /> </td> <td>Cents value<br /> </td> </tr> <tr> <td>0<br /> </td> <td>0<br /> </td> </tr> <tr> <td>1<br /> </td> <td>24<br /> </td> </tr> <tr> <td>2<br /> </td> <td>48<br /> </td> </tr> <tr> <td>3<br /> </td> <td>72<br /> </td> </tr> <tr> <td>4<br /> </td> <td>96<br /> </td> </tr> <tr> <td>5<br /> </td> <td>120<br /> </td> </tr> <tr> <td>6<br /> </td> <td>144<br /> </td> </tr> <tr> <td>7<br /> </td> <td>168<br /> </td> </tr> <tr> <td>8<br /> </td> <td>192<br /> </td> </tr> <tr> <td>9<br /> </td> <td>216<br /> </td> </tr> <tr> <td>10<br /> </td> <td>240<br /> </td> </tr> <tr> <td>11<br /> </td> <td>264<br /> </td> </tr> <tr> <td>12<br /> </td> <td>288<br /> </td> </tr> <tr> <td>13<br /> </td> <td>312<br /> </td> </tr> <tr> <td>14<br /> </td> <td>336<br /> </td> </tr> <tr> <td>15<br /> </td> <td>360<br /> </td> </tr> <tr> <td>16<br /> </td> <td>384<br /> </td> </tr> <tr> <td>17<br /> </td> <td>408<br /> </td> </tr> <tr> <td>18<br /> </td> <td>432<br /> </td> </tr> <tr> <td>19<br /> </td> <td>456<br /> </td> </tr> <tr> <td>20<br /> </td> <td>480<br /> </td> </tr> <tr> <td>21<br /> </td> <td>504<br /> </td> </tr> <tr> <td>22<br /> </td> <td>528<br /> </td> </tr> <tr> <td>23<br /> </td> <td>552<br /> </td> </tr> <tr> <td>24<br /> </td> <td>576<br /> </td> </tr> <tr> <td>25<br /> </td> <td>600<br /> </td> </tr> <tr> <td>26<br /> </td> <td>624<br /> </td> </tr> <tr> <td>27<br /> </td> <td>648<br /> </td> </tr> <tr> <td>28<br /> </td> <td>672<br /> </td> </tr> <tr> <td>29<br /> </td> <td>696<br /> </td> </tr> <tr> <td>30<br /> </td> <td>720<br /> </td> </tr> <tr> <td>31<br /> </td> <td>744<br /> </td> </tr> <tr> <td>32<br /> </td> <td>768<br /> </td> </tr> <tr> <td>33<br /> </td> <td>792<br /> </td> </tr> <tr> <td>34<br /> </td> <td>816<br /> </td> </tr> <tr> <td>35<br /> </td> <td>840<br /> </td> </tr> <tr> <td>36<br /> </td> <td>864<br /> </td> </tr> <tr> <td>37<br /> </td> <td>888<br /> </td> </tr> <tr> <td>38<br /> </td> <td>912<br /> </td> </tr> <tr> <td>39<br /> </td> <td>936<br /> </td> </tr> <tr> <td>40<br /> </td> <td>960<br /> </td> </tr> <tr> <td>41<br /> </td> <td>984<br /> </td> </tr> <tr> <td>42<br /> </td> <td>1008<br /> </td> </tr> <tr> <td>43<br /> </td> <td>1032<br /> </td> </tr> <tr> <td>44<br /> </td> <td>1056<br /> </td> </tr> <tr> <td>45<br /> </td> <td>1080<br /> </td> </tr> <tr> <td>46<br /> </td> <td>1104<br /> </td> </tr> <tr> <td>47<br /> </td> <td>1128<br /> </td> </tr> <tr> <td>48<br /> </td> <td>1152<br /> </td> </tr> <tr> <td>49<br /> </td> <td>1176<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="x-Commas"></a><!-- ws:end:WikiTextHeadingRule:4 -->Commas</h2> 50 EDO tempers out the following commas. (Note: This assumes the val < 50 79 116 140 173 185 204 212 226 |, comma values rounded to 2 decimal places.) This list is not all-inclusive, and is based on the interval table from Scala version 2.2.<br /> <table class="wiki_table"> <tr> <th><!-- ws:start:WikiTextHeadingRule:6:<h3> --><h3 id="toc3"><a name="x-Commas-In bra format"></a><!-- ws:end:WikiTextHeadingRule:6 -->In bra format</h3> </th> <th><!-- ws:start:WikiTextHeadingRule:8:<h3> --><h3 id="toc4"><a name="x-Commas-In cents"></a><!-- ws:end:WikiTextHeadingRule:8 -->In cents</h3> </th> <th><!-- ws:start:WikiTextHeadingRule:10:<h3> --><h3 id="toc5"><a name="x-Commas-Ratio"></a><!-- ws:end:WikiTextHeadingRule:10 -->Ratio</h3> </th> <th><!-- ws:start:WikiTextHeadingRule:12:<h3> --><h3 id="toc6"><a name="x-Commas-Name 1"></a><!-- ws:end:WikiTextHeadingRule:12 -->Name 1</h3> </th> <th><!-- ws:start:WikiTextHeadingRule:14:<h3> --><h3 id="toc7"><a name="x-Commas-Name2"></a><!-- ws:end:WikiTextHeadingRule:14 -->Name2</h3> </th> </tr> <tr> <td>| -4 4 -1 ><br /> </td> <td style="text-align: right;">21.51<br /> </td> <td style="text-align: center;">81/80<br /> </td> <td>Syntonic comma<br /> </td> <td>Didymus comma<br /> </td> </tr> <tr> <td>| -8 8 -2 ><br /> </td> <td style="text-align: right;">43.01<br /> </td> <td style="text-align: center;">6561/6400<br /> </td> <td>Mathieu superdiesis<br /> </td> <td><br /> </td> </tr> <tr> <td>| 23 6 -14 ><br /> </td> <td style="text-align: right;">3.34<br /> </td> <td style="text-align: center;">6115295232/6103515625<br /> </td> <td>Vishnu comma<br /> </td> <td><br /> </td> </tr> <tr> <td>| 1 2 -3 1 ><br /> </td> <td style="text-align: right;">13.79<br /> </td> <td style="text-align: center;">126/125<br /> </td> <td>Starling comma<br /> </td> <td>Small septimal comma<br /> </td> </tr> <tr> <td>| -5 2 2 -1 ><br /> </td> <td style="text-align: right;">7.71<br /> </td> <td style="text-align: center;">225/224<br /> </td> <td>Septimal kleisma<br /> </td> <td><br /> </td> </tr> <tr> <td>| 6 0 -5 2 ><br /> </td> <td style="text-align: right;">6.08<br /> </td> <td style="text-align: center;">3136/3125<br /> </td> <td>Middle second comma<br /> </td> <td><br /> </td> </tr> <tr> <td>| -6 -8 2 5 ><br /> </td> <td style="text-align: right;">1.12<br /> </td> <td style="text-align: center;">420175/419904<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>|-11 2 7 -3 ><br /> </td> <td style="text-align: right;">1.63<br /> </td> <td style="text-align: center;">703125/702464<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>| 11 -10 -10 10 ><br /> </td> <td style="text-align: right;">5.57<br /> </td> <td style="text-align: center;">6772805/6751042<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>|-13 10 0 -1 ><br /> </td> <td style="text-align: right;">50.72<br /> </td> <td style="text-align: center;">59049/57344<br /> </td> <td>Harrison's comma<br /> </td> <td><br /> </td> </tr> <tr> <td>| 2 3 1 -2 -1 ><br /> </td> <td style="text-align: right;">3.21<br /> </td> <td style="text-align: center;">540/539<br /> </td> <td>Swets' comma<br /> </td> <td>Swetisma<br /> </td> </tr> <tr> <td>| -3 4 -2 -2 2 ><br /> </td> <td style="text-align: right;">0.18<br /> </td> <td style="text-align: center;">9801/9800<br /> </td> <td>Kalisma<br /> </td> <td>Gauss' comma<br /> </td> </tr> <tr> <td>| 5 -1 3 0 -3 ><br /> </td> <td style="text-align: right;">3.03<br /> </td> <td style="text-align: center;">4000/3993<br /> </td> <td>Wizardharry<br /> </td> <td>Undecimal schisma<br /> </td> </tr> <tr> <td>| -7 -1 1 1 1 ><br /> </td> <td style="text-align: right;">4.50<br /> </td> <td style="text-align: center;">385/384<br /> </td> <td>Keenanisma<br /> </td> <td>Undecimal kleisma<br /> </td> </tr> <tr> <td>| -1 0 1 2 -2 ><br /> </td> <td style="text-align: right;">21.33<br /> </td> <td style="text-align: center;">245/242<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>| 2 -1 0 1 -2 1 ><br /> </td> <td style="text-align: right;">4.76<br /> </td> <td style="text-align: center;">364/363<br /> </td> <td>Gentle comma<br /> </td> <td><br /> </td> </tr> <tr> <td>| 2 -1 -1 2 0 -1 ><br /> </td> <td style="text-align: right;">8.86<br /> </td> <td style="text-align: center;">196/195<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>| 2 3 0 -1 1 -2 ><br /> </td> <td style="text-align: right;">7.30<br /> </td> <td style="text-align: center;">1188/1183<br /> </td> <td>Kestrel Comma<br /> </td> <td><br /> </td> </tr> <tr> <td>| 3 0 2 0 1 -3 ><br /> </td> <td style="text-align: right;">2.36<br /> </td> <td style="text-align: center;">2200/2197<br /> </td> <td>Petrma<br /> </td> <td>Parizek comma<br /> </td> </tr> <tr> <td>| -3 1 1 1 0 -1 ><br /> </td> <td style="text-align: right;">16.57<br /> </td> <td style="text-align: center;">105/104<br /> </td> <td>Animist comma<br /> </td> <td>Small tridecimal comma<br /> </td> <td><br /> </td> </tr> <tr> <td>| 4 2 0 0 -1 -1 ><br /> </td> <td style="text-align: right;">12.06<br /> </td> <td style="text-align: center;">144/143<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>| 3 -2 0 1 -1 -1 0 0 1 ><br /> </td> <td style="text-align: right;">1.34<br /> </td> <td style="text-align: center;">1288/1287<br /> </td> <td>Triaphonisma<br /> </td> <td><br /> </td> </tr> </table> <br /> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-50-edo.mp3" rel="nofollow">Twinkle canon – 50 edo</a> by <a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/573" rel="nofollow">Claudi Meneghin</a><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -4 4 -1 > 21.51 81/80 syntonic comma, Didymus comma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -8 8 -2 > 43.01 6561/6400 Mathieu superdiesis</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 23 6 -14 > 3.34 1212717/1210381 Vishnu comma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 1 2 -3 1 > 13.79 126/125 small septimal comma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -5 2 2 -1 > 7.71 225/224 septimal kleisma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 6 0 -5 2 > 6.08 3136/3125 middle second comma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -6 -8 2 5 > 1.12 420175/419904</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">|-11 2 7 -3 > 1.63 703125/702464</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 11 -10 -10 10 > 5.57 6772805/6751042</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">|-13 10 0 -1 > 50.72 59049/57344 Harrison's comma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 2 3 1 -2 -1 > 3.21 540/539 Swets' comma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -3 4 -2 -2 2 > 0.18 9801/9800 kalisma, Gauss' comma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 5 -1 3 0 -3 > 3.03 4000/3993 undecimal schisma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -7 -1 1 1 1 > 4.50 385/384 undecimal kleisma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 2 -1 0 1 -2 1 > 4.76 364/363</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 2 3 0 -1 1 -2 > 7.30 1188/1183 Kestrel Comma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 3 0 2 0 1 -3 > 2.36 2200/2197 Parizek comma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| -3 1 1 1 0 -1 > 16.57 105/104 small tridecimal comma</span><br /> <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 5675.5px; width: 1px;">| 3 -2 0 1 -1 -1 0 0 1 > 1.34 1288/1287 triaphonisma</span><span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: 2963px; width: 1px;"><br /> <table class="wiki_table"> <tr> <td>6115295232.00<br /> </td> </tr> </table> </span></body></html>