231edo: Difference between revisions
→Rank-2 temperaments: +hanson |
+infobox and improve intro |
||
Line 1: | Line 1: | ||
The ''231 equal temperament'' divides the octave into 231 equal parts of 5. | {{Infobox ET | ||
| Prime factorization = 3 × 7 × 11 | |||
| Step size = 5.19481¢ | |||
| Fifth = 135\231 (701.30¢) (→ [[77edo|45\77]]) | |||
| Semitones = 21:18 (109.09¢ : 93.51¢) | |||
| Consistency = 11 | |||
}} | |||
The '''231 equal divisions of the octave''' ('''231edo'''), or the '''231(-tone) equal temperament''' ('''231tet''', '''231et''') when viewed from a [[regular temperament]] perspective, divides the [[octave]] into 231 [[equal]] parts of about 5.19 [[cent]]s each. | |||
== Theory == | == Theory == |