39edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>Osmiorisbendi **Imported revision 429130986 - Original comment: ** |
Wikispaces>Andrew_Heathwaite **Imported revision 431722584 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2013-05-15 09:02:49 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>431722584</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 19: | Line 19: | ||
* **v** = Semiflat (1/5-tone down) || | * **v** = Semiflat (1/5-tone down) || | ||
|| **Degrees** || **Armodue note** || **Cents size** || **[[xenharmonic/Nearest just interval|Nearest Just I]]nterval** || **Cents value** || **Error** || | ||~ **Degrees** ||~ **Armodue note** ||~ **Cents size** ||~ **[[xenharmonic/Nearest just interval|Nearest Just I]]nterval** ||~ **Cents value** ||~ **Error** ||~ 11-limit Ratio Assuming | ||
|| 0 || | <39 62 91 110 135| [[Val]] || | ||
|| 1 || 1‡ (9#) || 30.7692 || 57/56 || 30.6421 || +0.1271 || | || 0 || 1 || 0 || 1/1 || 0 || None || 1/1 || | ||
|| 2 || 2b || 61.5385 || 29/28 || 60.7513 || +0.7872 || | || 1 || 1‡ (9#) || 30.7692 || 57/56 || 30.6421 || +0.1271 || || | ||
|| 3 || 1# || 92.3077 || 39/37 || 91.1386 || +1.1691 || | || 2 || 2b || 61.5385 || 29/28 || 60.7513 || +0.7872 || || | ||
|| 4 || 2v || 123.0769 || 44/41 || 122.2555 || +0.8214 || | || 3 || 1# || 92.3077 || 39/37 || 91.1386 || +1.1691 || || | ||
|| 5 || 2 || 153.8462 || 35/32 || 155.1396 || -1.2934 || | || 4 || 2v || 123.0769 || 44/41 || 122.2555 || +0.8214 || || | ||
|| 6 || 2‡ || 184.6154 || 10/9 || 182.4037 || +2.2117 || | || 5 || 2 || 153.8462 || 35/32 || 155.1396 || -1.2934 || 12/11, 11/10 || | ||
|| 7**·** || 3b || 215.3846 || 17/15 || 216.6867 || -1.3021 || | || 6 || 2‡ || 184.6154 || 10/9 || 182.4037 || +2.2117 || 10/9 || | ||
|| 8 || 2# || 246.1538 || 15/13 || 247.7411 || -1.5873 || | || 7**·** || 3b || 215.3846 || 17/15 || 216.6867 || -1.3021 || 8/7, 9/8 || | ||
|| 9 || 3v || 276.9231 || 27/23 || 277.5907 || -0.6676 || | || 8 || 2# || 246.1538 || 15/13 || 247.7411 || -1.5873 || || | ||
|| 10 || 3 || 307.6923 || 43/36 || 307.6077 || +0.0846 || | || 9 || 3v || 276.9231 || 27/23 || 277.5907 || -0.6676 || 7/6 || | ||
|| 11 || 3‡ || 338.4615 || 17/14 || 336.1295 || +2.332 || | || 10 || 3 || 307.6923 || 43/36 || 307.6077 || +0.0846 || 6/5 || | ||
|| 12**·** || 4b || 369.2308 || 26/21 || 369.7468 || -0.516 || | || 11 || 3‡ || 338.4615 || 17/14 || 336.1295 || +2.332 || 11/9 || | ||
|| 13 || 3# || 400 || 34/27 || 399.0904 || +0.9096 || | || 12**·** || 4b || 369.2308 || 26/21 || 369.7468 || -0.516 || || | ||
|| 14 || 4v (5b) || 430.7692 || 41/32 || 429.0624 || +1.7068 || | || 13 || 3# || 400 || 34/27 || 399.0904 || +0.9096 || 5/4 || | ||
|| 15 || 4 || 461.5385 || 30/23 || 459.9944 || +1.5441 || | || 14 || 4v (5b) || 430.7692 || 41/32 || 429.0624 || +1.7068 || 9/7, 14/11 || | ||
|| 16 || 4‡ (5v) || 492.3077 || 85/64 || 491.2691 || +1.0386 || | || 15 || 4 || 461.5385 || 30/23 || 459.9944 || +1.5441 || || | ||
|| 17**·** || 5 || 523.0769 || 23/17 || 523.3189 || -0.242 || | || 16 || 4‡ (5v) || 492.3077 || 85/64 || 491.2691 || +1.0386 || 4/3 || | ||
|| 18 || 5‡ (4#) || 553.8462 || 11/8 || 551.3179 || +2.5283 || | || 17**·** || 5 || 523.0769 || 23/17 || 523.3189 || -0.242 || || | ||
|| 19 || 6b || 584.6154 || 7/5 || 582.5122 || +2.1032 || | || 18 || 5‡ (4#) || 553.8462 || 11/8 || 551.3179 || +2.5283 || 11/8 || | ||
|| 20 || 5# || 615.3846 || 10/7 || 617.4878 || -2.1032 || | || 19 || 6b || 584.6154 || 7/5 || 582.5122 || +2.1032 || 7/5 || | ||
|| 21 || 6v || 646.1538 || 16/11 || 648.6821 || -2.5283 || | || 20 || 5# || 615.3846 || 10/7 || 617.4878 || -2.1032 || 10/7 || | ||
|| 22**·** || 6 || 676.9231 || 34/23 || 676.6811 || +0.242 || | || 21 || 6v || 646.1538 || 16/11 || 648.6821 || -2.5283 || 16/11 || | ||
|| 23 || 6‡ || 707.6923 || 128/85 || 708.7309 || -1.0386 || | || 22**·** || 6 || 676.9231 || 34/23 || 676.6811 || +0.242 || || | ||
|| 24 || 7b || 738.4615 || 23/15 || 740.0056 || -1.5441 || | || 23 || 6‡ || 707.6923 || 128/85 || 708.7309 || -1.0386 || 3/2 || | ||
|| 25 || 6# || 769.2308 || 64/41 || 770.9376 || -1.7068 || | || 24 || 7b || 738.4615 || 23/15 || 740.0056 || -1.5441 || || | ||
|| 26 || 7v || 800 || 27/17 || 800.9096 || -0.9096 || | || 25 || 6# || 769.2308 || 64/41 || 770.9376 || -1.7068 || 14/9, 11/7 || | ||
|| 27**·** || 7 || 830.7692 || 21/13 || 830.2532 || +0.516 || | || 26 || 7v || 800 || 27/17 || 800.9096 || -0.9096 || 8/5 || | ||
|| 28 || 7‡ || 861.5385 || 28/17 || 863.8705 || -2.332 || | || 27**·** || 7 || 830.7692 || 21/13 || 830.2532 || +0.516 || || | ||
|| 29 || 8b || 892.3077 || 72/43 || 892.3923 || -0.0846 || | || 28 || 7‡ || 861.5385 || 28/17 || 863.8705 || -2.332 || 18/11 || | ||
|| 30 || 7# || 923.0769 || 46/27 || 922.4093 || +0.6676 || | || 29 || 8b || 892.3077 || 72/43 || 892.3923 || -0.0846 || 5/3 || | ||
|| 31 || 8v || 953.8462 || 26/15 || 952.2589 || +1.5873 || | || 30 || 7# || 923.0769 || 46/27 || 922.4093 || +0.6676 || 12/7 || | ||
|| 32**·** || 8 || 984.6154 || 30/17 || 983.3133 || +1.3021 || | || 31 || 8v || 953.8462 || 26/15 || 952.2589 || +1.5873 || || | ||
|| 33 || 8‡ || 1015.3846 || 9/5 || 1017.5963 || -2.2117 || | || 32**·** || 8 || 984.6154 || 30/17 || 983.3133 || +1.3021 || 7/4, 16/9 || | ||
|| 34 || 9b || 1046.1538 || 64/35 || 1044.8604 || +1.2934 || | || 33 || 8‡ || 1015.3846 || 9/5 || 1017.5963 || -2.2117 || 9/5 || | ||
|| 35 || 8# || 1076.9231 || 41/22 || 1077.7445 || -0.8214 || | || 34 || 9b || 1046.1538 || 64/35 || 1044.8604 || +1.2934 || 11/6, 20/11 || | ||
|| 36 || 9v (1b) || 1107.6923 || 74/39 || 1108.8614 || -1.1691 || | || 35 || 8# || 1076.9231 || 41/22 || 1077.7445 || -0.8214 || || | ||
|| 37 || 9 || 1138.4615 || 56/29 || 1139.2487 || -0.7872 || | || 36 || 9v (1b) || 1107.6923 || 74/39 || 1108.8614 || -1.1691 || || | ||
|| 38 || 9‡ (1v) || 1169.2308 || 112/57 || 1169.3579 || -0.1271 || | || 37 || 9 || 1138.4615 || 56/29 || 1139.2487 || -0.7872 || || | ||
|| 39**··**(or 0) || 1 || 1200 || 2/1 || 1200 || None || | || 38 || 9‡ (1v) || 1169.2308 || 112/57 || 1169.3579 || -0.1271 || || | ||
|| 39**··**(or 0) || 1 || 1200 || 2/1 || 1200 || None || || | |||
==__Instruments (prototypes):__== | ==__Instruments (prototypes):__== | ||
Line 139: | Line 140: | ||
<table class="wiki_table"> | <table class="wiki_table"> | ||
<tr> | <tr> | ||
< | <th><strong>Degrees</strong><br /> | ||
</ | </th> | ||
< | <th><strong>Armodue note</strong><br /> | ||
</ | </th> | ||
< | <th><strong>Cents size</strong><br /> | ||
</ | </th> | ||
< | <th><strong><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Nearest%20just%20interval">Nearest Just I</a>nterval</strong><br /> | ||
</ | </th> | ||
< | <th><strong>Cents value</strong><br /> | ||
</ | </th> | ||
< | <th><strong>Error</strong><br /> | ||
</ | </th> | ||
<th>11-limit Ratio Assuming<br /> | |||
&lt;39 62 91 110 135| <a class="wiki_link" href="/Val">Val</a><br /> | |||
</th> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>0<br /> | <td>0<br /> | ||
</td> | </td> | ||
<td | <td>1<br /> | ||
</td> | </td> | ||
<td>0<br /> | <td>0<br /> | ||
</td> | </td> | ||
<td | <td>1/1<br /> | ||
</td> | </td> | ||
<td>0<br /> | <td>0<br /> | ||
</td> | </td> | ||
<td>< | <td>None<br /> | ||
</td> | |||
<td>1/1<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 178: | Line 184: | ||
</td> | </td> | ||
<td>+0.1271<br /> | <td>+0.1271<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 192: | Line 200: | ||
</td> | </td> | ||
<td>+0.7872<br /> | <td>+0.7872<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 206: | Line 216: | ||
</td> | </td> | ||
<td>+1.1691<br /> | <td>+1.1691<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 220: | Line 232: | ||
</td> | </td> | ||
<td>+0.8214<br /> | <td>+0.8214<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 234: | Line 248: | ||
</td> | </td> | ||
<td>-1.2934<br /> | <td>-1.2934<br /> | ||
</td> | |||
<td>12/11, 11/10<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 248: | Line 264: | ||
</td> | </td> | ||
<td>+2.2117<br /> | <td>+2.2117<br /> | ||
</td> | |||
<td>10/9<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 262: | Line 280: | ||
</td> | </td> | ||
<td>-1.3021<br /> | <td>-1.3021<br /> | ||
</td> | |||
<td>8/7, 9/8<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 276: | Line 296: | ||
</td> | </td> | ||
<td>-1.5873<br /> | <td>-1.5873<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 290: | Line 312: | ||
</td> | </td> | ||
<td>-0.6676<br /> | <td>-0.6676<br /> | ||
</td> | |||
<td>7/6<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 304: | Line 328: | ||
</td> | </td> | ||
<td>+0.0846<br /> | <td>+0.0846<br /> | ||
</td> | |||
<td>6/5<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 318: | Line 344: | ||
</td> | </td> | ||
<td>+2.332<br /> | <td>+2.332<br /> | ||
</td> | |||
<td>11/9<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 332: | Line 360: | ||
</td> | </td> | ||
<td>-0.516<br /> | <td>-0.516<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 346: | Line 376: | ||
</td> | </td> | ||
<td>+0.9096<br /> | <td>+0.9096<br /> | ||
</td> | |||
<td>5/4<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 360: | Line 392: | ||
</td> | </td> | ||
<td>+1.7068<br /> | <td>+1.7068<br /> | ||
</td> | |||
<td>9/7, 14/11<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 374: | Line 408: | ||
</td> | </td> | ||
<td>+1.5441<br /> | <td>+1.5441<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 388: | Line 424: | ||
</td> | </td> | ||
<td>+1.0386<br /> | <td>+1.0386<br /> | ||
</td> | |||
<td>4/3<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 402: | Line 440: | ||
</td> | </td> | ||
<td>-0.242<br /> | <td>-0.242<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 416: | Line 456: | ||
</td> | </td> | ||
<td>+2.5283<br /> | <td>+2.5283<br /> | ||
</td> | |||
<td>11/8<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 430: | Line 472: | ||
</td> | </td> | ||
<td>+2.1032<br /> | <td>+2.1032<br /> | ||
</td> | |||
<td>7/5<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 444: | Line 488: | ||
</td> | </td> | ||
<td>-2.1032<br /> | <td>-2.1032<br /> | ||
</td> | |||
<td>10/7<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 458: | Line 504: | ||
</td> | </td> | ||
<td>-2.5283<br /> | <td>-2.5283<br /> | ||
</td> | |||
<td>16/11<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 472: | Line 520: | ||
</td> | </td> | ||
<td>+0.242<br /> | <td>+0.242<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 486: | Line 536: | ||
</td> | </td> | ||
<td>-1.0386<br /> | <td>-1.0386<br /> | ||
</td> | |||
<td>3/2<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 500: | Line 552: | ||
</td> | </td> | ||
<td>-1.5441<br /> | <td>-1.5441<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 514: | Line 568: | ||
</td> | </td> | ||
<td>-1.7068<br /> | <td>-1.7068<br /> | ||
</td> | |||
<td>14/9, 11/7<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 528: | Line 584: | ||
</td> | </td> | ||
<td>-0.9096<br /> | <td>-0.9096<br /> | ||
</td> | |||
<td>8/5<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 542: | Line 600: | ||
</td> | </td> | ||
<td>+0.516<br /> | <td>+0.516<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 556: | Line 616: | ||
</td> | </td> | ||
<td>-2.332<br /> | <td>-2.332<br /> | ||
</td> | |||
<td>18/11<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 570: | Line 632: | ||
</td> | </td> | ||
<td>-0.0846<br /> | <td>-0.0846<br /> | ||
</td> | |||
<td>5/3<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 584: | Line 648: | ||
</td> | </td> | ||
<td>+0.6676<br /> | <td>+0.6676<br /> | ||
</td> | |||
<td>12/7<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 598: | Line 664: | ||
</td> | </td> | ||
<td>+1.5873<br /> | <td>+1.5873<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 612: | Line 680: | ||
</td> | </td> | ||
<td>+1.3021<br /> | <td>+1.3021<br /> | ||
</td> | |||
<td>7/4, 16/9<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 626: | Line 696: | ||
</td> | </td> | ||
<td>-2.2117<br /> | <td>-2.2117<br /> | ||
</td> | |||
<td>9/5<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 640: | Line 712: | ||
</td> | </td> | ||
<td>+1.2934<br /> | <td>+1.2934<br /> | ||
</td> | |||
<td>11/6, 20/11<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 654: | Line 728: | ||
</td> | </td> | ||
<td>-0.8214<br /> | <td>-0.8214<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 668: | Line 744: | ||
</td> | </td> | ||
<td>-1.1691<br /> | <td>-1.1691<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 682: | Line 760: | ||
</td> | </td> | ||
<td>-0.7872<br /> | <td>-0.7872<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 696: | Line 776: | ||
</td> | </td> | ||
<td>-0.1271<br /> | <td>-0.1271<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 710: | Line 792: | ||
</td> | </td> | ||
<td>None<br /> | <td>None<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 717: | Line 801: | ||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="x39 tone equal temperament-Instruments (prototypes):"></a><!-- ws:end:WikiTextHeadingRule:4 --><u>Instruments (prototypes):</u></h2> | <!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="x39 tone equal temperament-Instruments (prototypes):"></a><!-- ws:end:WikiTextHeadingRule:4 --><u>Instruments (prototypes):</u></h2> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:686:&lt;img src=&quot;/file/view/TECLADO%2039-EDD.PNG/390052498/800x467/TECLADO%2039-EDD.PNG&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 467px; width: 800px;&quot; /&gt; --><img src="/file/view/TECLADO%2039-EDD.PNG/390052498/800x467/TECLADO%2039-EDD.PNG" alt="TECLADO 39-EDD.PNG" title="TECLADO 39-EDD.PNG" style="height: 467px; width: 800px;" /><!-- ws:end:WikiTextLocalImageRule:686 --><br /> | ||
<em>An illustrative image of a 39-ED2 keyboard</em><br /> | <em>An illustrative image of a 39-ED2 keyboard</em><br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:687:&lt;img src=&quot;http://xenharmonic.wikispaces.com/file/view/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png/258445130/826x203/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png&quot; alt=&quot;39-EDD fretboard visualization&quot; title=&quot;39-EDD fretboard visualization&quot; style=&quot;height: 203px; width: 826px;&quot; /&gt; --><table class="captionBox"><tr><td class="captionedImage"><img src="http://xenharmonic.wikispaces.com/file/view/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png/258445130/826x203/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" alt="Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" title="Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" style="height: 203px; width: 826px;" /></td></tr><tr><td class="imageCaption">39-EDD fretboard visualization</td></tr></table><!-- ws:end:WikiTextLocalImageRule:687 --><br /> | ||
<br /> | <br /> | ||
<br /> | <br /> |
Revision as of 09:02, 15 May 2013
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Andrew_Heathwaite and made on 2013-05-15 09:02:49 UTC.
- The original revision id was 431722584.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=<span style="color: #9900ab; font-family: 'Times New Roman',Times,serif; font-size: 113%;">39 tone equal temperament</span>= **39-EDO, 39-ED2** or **39-tET** divides the Octave (Ditave 2/1) in 39 equal parts of 30.76923 Cents each one. If we take 22\39 as a fifth, can be used in Mavila Temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group that use the scheme of [[xenharmonic/7L 2s|Superdiatonic]] LLLsLLLLs like a basical scale for notation and theory, suited in [[xenharmonic/16edo|16-ED2]], and allied systems: [[xenharmonic/25edo|25-ED2]] [1/3-tone 3;2]; [[xenharmonic/41edo|41-ED2]] [1/5-tone 5;3]; and [[xenharmonic/57edo|57]] ED2 [1/7-tone 7;4]. **Hornbostel Temperaments** is included too with: [[xenharmonic/23edo|23-ED2]] [1/3-tone 3;1]; 39-ED2 [1/5-tone 5;2] & [[xenharmonic/62edo|62-ED2]] [1/8-tone 8;3]. [[223edo|223-ED2]], the best accuracy for Hornbostel temperament fits very good with Armodue like 1/29-tone 29;10 version. Note that [[101edo|101]], [[131edo|131]], [[177edo|177]] & [[200edo|200]] ED2s are tempered systems that [[http://www.h-pi.com/eop-ogolevets.html|Alexei Ogolevets]] (Ukraine, 1891 - 1967) was proposing in his List of Temperaments, in which the Armodue system fits very well in all these. However, its 23\39 fifth, 5.737 Cents sharp, is in much better tune than the Mavila fifth which like all Mavila fifths is very, very flat, in this case, 25 Cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO, in some few ways, allied to 12-ET in supporting augene temperament, and is in fact, an excellent choice for an augene tuning, but one difference is that 39 has a fine 11, and adding it to consideration we find that 39-EDO tempers out 99/98 and 121/120 also. This better choice for 39et is <39 62 91 110 135|. A particular anecdote with this 39 divisions per 2/1 was made in the Teliochordon, in 1788 by Charles Clagget (Ireland, 1740? - 1820), a little extract [[http://ml.oxfordjournals.org/content/76/2/291.extract.jpg|here]]. ==__**39-EDO Intervals**__== || **ARMODUE NOMENCLATURE 5;2 RELATION** || || * **‡** = Semisharp (1/5-tone up) * **b** = Flat (3/5-tone down) * **#** = Sharp (3/5-tone up) * **v** = Semiflat (1/5-tone down) || ||~ **Degrees** ||~ **Armodue note** ||~ **Cents size** ||~ **[[xenharmonic/Nearest just interval|Nearest Just I]]nterval** ||~ **Cents value** ||~ **Error** ||~ 11-limit Ratio Assuming <39 62 91 110 135| [[Val]] || || 0 || 1 || 0 || 1/1 || 0 || None || 1/1 || || 1 || 1‡ (9#) || 30.7692 || 57/56 || 30.6421 || +0.1271 || || || 2 || 2b || 61.5385 || 29/28 || 60.7513 || +0.7872 || || || 3 || 1# || 92.3077 || 39/37 || 91.1386 || +1.1691 || || || 4 || 2v || 123.0769 || 44/41 || 122.2555 || +0.8214 || || || 5 || 2 || 153.8462 || 35/32 || 155.1396 || -1.2934 || 12/11, 11/10 || || 6 || 2‡ || 184.6154 || 10/9 || 182.4037 || +2.2117 || 10/9 || || 7**·** || 3b || 215.3846 || 17/15 || 216.6867 || -1.3021 || 8/7, 9/8 || || 8 || 2# || 246.1538 || 15/13 || 247.7411 || -1.5873 || || || 9 || 3v || 276.9231 || 27/23 || 277.5907 || -0.6676 || 7/6 || || 10 || 3 || 307.6923 || 43/36 || 307.6077 || +0.0846 || 6/5 || || 11 || 3‡ || 338.4615 || 17/14 || 336.1295 || +2.332 || 11/9 || || 12**·** || 4b || 369.2308 || 26/21 || 369.7468 || -0.516 || || || 13 || 3# || 400 || 34/27 || 399.0904 || +0.9096 || 5/4 || || 14 || 4v (5b) || 430.7692 || 41/32 || 429.0624 || +1.7068 || 9/7, 14/11 || || 15 || 4 || 461.5385 || 30/23 || 459.9944 || +1.5441 || || || 16 || 4‡ (5v) || 492.3077 || 85/64 || 491.2691 || +1.0386 || 4/3 || || 17**·** || 5 || 523.0769 || 23/17 || 523.3189 || -0.242 || || || 18 || 5‡ (4#) || 553.8462 || 11/8 || 551.3179 || +2.5283 || 11/8 || || 19 || 6b || 584.6154 || 7/5 || 582.5122 || +2.1032 || 7/5 || || 20 || 5# || 615.3846 || 10/7 || 617.4878 || -2.1032 || 10/7 || || 21 || 6v || 646.1538 || 16/11 || 648.6821 || -2.5283 || 16/11 || || 22**·** || 6 || 676.9231 || 34/23 || 676.6811 || +0.242 || || || 23 || 6‡ || 707.6923 || 128/85 || 708.7309 || -1.0386 || 3/2 || || 24 || 7b || 738.4615 || 23/15 || 740.0056 || -1.5441 || || || 25 || 6# || 769.2308 || 64/41 || 770.9376 || -1.7068 || 14/9, 11/7 || || 26 || 7v || 800 || 27/17 || 800.9096 || -0.9096 || 8/5 || || 27**·** || 7 || 830.7692 || 21/13 || 830.2532 || +0.516 || || || 28 || 7‡ || 861.5385 || 28/17 || 863.8705 || -2.332 || 18/11 || || 29 || 8b || 892.3077 || 72/43 || 892.3923 || -0.0846 || 5/3 || || 30 || 7# || 923.0769 || 46/27 || 922.4093 || +0.6676 || 12/7 || || 31 || 8v || 953.8462 || 26/15 || 952.2589 || +1.5873 || || || 32**·** || 8 || 984.6154 || 30/17 || 983.3133 || +1.3021 || 7/4, 16/9 || || 33 || 8‡ || 1015.3846 || 9/5 || 1017.5963 || -2.2117 || 9/5 || || 34 || 9b || 1046.1538 || 64/35 || 1044.8604 || +1.2934 || 11/6, 20/11 || || 35 || 8# || 1076.9231 || 41/22 || 1077.7445 || -0.8214 || || || 36 || 9v (1b) || 1107.6923 || 74/39 || 1108.8614 || -1.1691 || || || 37 || 9 || 1138.4615 || 56/29 || 1139.2487 || -0.7872 || || || 38 || 9‡ (1v) || 1169.2308 || 112/57 || 1169.3579 || -0.1271 || || || 39**··**(or 0) || 1 || 1200 || 2/1 || 1200 || None || || ==__Instruments (prototypes):__== [[image:TECLADO 39-EDD.PNG width="800" height="467"]] //An illustrative image of a 39-ED2 keyboard// [[image:xenharmonic/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png width="826" height="203" caption="39-EDD fretboard visualization"]] ==**__39 tone equal [[xenharmonic/modes|modes]]__:**== 15 15 9 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/2L 1s|2L 1s]] 14 14 11 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/2L 1s|2L 1s]] 13 13 13 = [[xenharmonic/3edo|3edo]] 11 11 11 6 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/3L 1s|3L 1s]] 10 10 10 9 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/3L 1s|3L 1s]] 11 3 11 11 3 - [[xenharmonic/MOSScales|MOS]] of type [[3L 2s|3L 2s (Father pentatonic)]] 11 3 11 3 11 - <span style="cursor: pointer;">[[xenharmonic/MOSScales|MOS]]</span> of type <span style="color: #660000; cursor: pointer;">[[3L 2s|3L 2s (Father pentatonic)]]</span> 9 6 9 9 6 - [[xenharmonic/MOSScales|MOS]] of type [[3L 2s|3L 2s (Father pentatonic)]] 9 6 9 6 9 - <span style="cursor: pointer;">[[xenharmonic/MOSScales|MOS]]</span> of type <span style="color: #660000; cursor: pointer;">[[3L 2s|3L 2s (Father pentatonic)]]</span> 9 9 9 9 3 - [[xenharmonic/MOSScales|MOS]] of type [[4L 1s|4L 1s (Bug pentatonic)]] 9 3 9 9 9 - <span style="cursor: pointer;">[[xenharmonic/MOSScales|MOS]]</span> of type <span style="color: #660000; cursor: pointer;">[[4L 1s|4L 1s (Bug pentatonic)]]</span> 8 8 8 8 7 - [[xenharmonic/MOSScales|MOS]] of type [[4L 1s|4L 1s (Bug pentatonic)]] 10 3 10 3 10 3 - [[xenharmonic/MOSScales|MOS]] of type [[3L 3s|3L 3s (Augmented hexatonic)]] 9 4 9 4 9 4 - [[xenharmonic/MOSScales|MOS]] of type [[3L 3s|3L 3s (Augmented hexatonic)]] 8 5 8 5 8 5 - [[xenharmonic/MOSScales|MOS]] of type [[3L 3s|3L 3s (Augmented hexatonic)]] 7 7 7 7 7 4 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/5L 1s|5L 1s (Grumpy hexatonic)]] 7 4 7 7 7 7 - <span style="cursor: pointer;">[[xenharmonic/MOSScales|MOS]]</span> of type <span style="cursor: pointer;">[[xenharmonic/5L 1s|5L 1s (Grumpy hexatonic)]]</span> 3 9 3 9 3 9 3 - [[xenharmonic/MOSScales|MOS]] of type [[3L 4s|3L 4s (Mosh heptatonic)]] 5 5 7 5 5 5 7 - [[xenharmonic/MOSScales|MOS]] of type [[2L 5s|2L 5s (heptatonic Mavila Anti-Diatonic)]] 5 5 5 7 5 5 7 - [[xenharmonic/MOSScales|MOS]] of type [[2L 5s|2L 5s (heptatonic Mavila Anti-Diatonic)]] 5 7 5 5 7 5 5 - [[xenharmonic/MOSScales|MOS]] of type [[2L 5s|2L 5s (heptatonic Mavila Anti-Diatonic)]] 6 3 6 6 3 6 6 3 - [[xenharmonic/MOSScales|MOS]] of type [[5L 3s|5L 3s (unfair Father octatonic)]] 5 5 5 5 5 5 5 4 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/7L 1s|7L 1s (Grumpy octatonic)]] 5 4 5 5 5 5 5 5 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/7L 1s|7L 1s (Grumpy octatonic)]] **5 5 5 2 5 5 5 5 2** - [[xenharmonic/MOSScales|MOS]] of type [[7L 2s|7L 2s (nonatonic Mavila Superdiatonic)]] 5 5 2 5 5 5 2 5 5 - [[xenharmonic/MOSScales|MOS]] of type [[7L 2s|7L 2s (nonatonic Mavila Superdiatonic)]] 5 5 3 5 5 3 5 5 3 - [[xenharmonic/MOSScales|MOS]] of type [[6L 3s|6L 3s (unfair Augmented nonatonic)]] 5 4 4 5 4 4 5 4 4 - [[xenharmonic/MOSScales|MOS]] of type [[3L 6s|3L 6s (fair Augmented nonatonic)]] 4 4 4 4 4 4 4 4 4 3 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/9L 1s|9L 1s (Grumpy decatonic)]] 4 4 3 4 4 4 4 4 4 4 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/9L 1s|9L 1s (Grumpy decatonic)]] **3 3 5 3 3 3 5 3 3 3 5** - [[xenharmonic/MOSScales|MOS]] of type [[3L 8s|3L 8s (Anti-Sensi hendecatonic)]] 3 3 3 3 3 3 3 3 3 3 3 3 3 = [[xenharmonic/13edo|13edo]] **3 3 3 2 3 3 3 3 2 3 3 3 3 2** - [[xenharmonic/MOSScales|MOS]] of type [[11L 3s|11L 3s (Ketradektriatoh tetradecatonic)]] 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/9L 6s|9L 6s]] 3 2 3 2 3 2 2 3 2 3 2 3 2 3 2 2 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/7L 9s|7L 9s]] **2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 2 3** - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/5L 12s|5L 12s]] 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/3L 15s|3L 15s]] **3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3** - <span style="cursor: pointer;">[[xenharmonic/MOSScales|MOS]]</span> of type [[xenharmonic/10L 9s|10L 9s]] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/19L 1s|19L 1s]] 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/17L 5s|17L 5s]] **2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1** - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/16L 7s|16L 7s]] 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/13L 13s|13L 13s]] **2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1** - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/10L 19s|10L 19s]] 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/8L 23s|8L 23s]]
Original HTML content:
<html><head><title>39edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x39 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #9900ab; font-family: 'Times New Roman',Times,serif; font-size: 113%;">39 tone equal temperament</span></h1> <br /> <strong>39-EDO, 39-ED2</strong> or <strong>39-tET</strong> divides the Octave (Ditave 2/1) in 39 equal parts of 30.76923 Cents each one. If we take 22\39 as a fifth, can be used in Mavila Temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group that use the scheme of <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7L%202s">Superdiatonic</a> LLLsLLLLs like a basical scale for notation and theory, suited in <a class="wiki_link" href="http://xenharmonic.wikispaces.com/16edo">16-ED2</a>, and allied systems: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/25edo">25-ED2</a> [1/3-tone 3;2]; <a class="wiki_link" href="http://xenharmonic.wikispaces.com/41edo">41-ED2</a> [1/5-tone 5;3]; and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/57edo">57</a> ED2 [1/7-tone 7;4]. <strong>Hornbostel Temperaments</strong> is included too with: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/23edo">23-ED2</a> [1/3-tone 3;1]; 39-ED2 [1/5-tone 5;2] & <a class="wiki_link" href="http://xenharmonic.wikispaces.com/62edo">62-ED2</a> [1/8-tone 8;3]. <a class="wiki_link" href="/223edo">223-ED2</a>, the best accuracy for Hornbostel temperament fits very good with Armodue like 1/29-tone 29;10 version. Note that <a class="wiki_link" href="/101edo">101</a>, <a class="wiki_link" href="/131edo">131</a>, <a class="wiki_link" href="/177edo">177</a> & <a class="wiki_link" href="/200edo">200</a> ED2s are tempered systems that <a class="wiki_link_ext" href="http://www.h-pi.com/eop-ogolevets.html" rel="nofollow">Alexei Ogolevets</a> (Ukraine, 1891 - 1967) was proposing in his List of Temperaments, in which the Armodue system fits very well in all these.<br /> However, its 23\39 fifth, 5.737 Cents sharp, is in much better tune than the Mavila fifth which like all Mavila fifths is very, very flat, in this case, 25 Cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO, in some few ways, allied to 12-ET in supporting augene temperament, and is in fact, an excellent choice for an augene tuning, but one difference is that 39 has a fine 11, and adding it to consideration we find that 39-EDO tempers out 99/98 and 121/120 also. This better choice for 39et is <39 62 91 110 135|.<br /> A particular anecdote with this 39 divisions per 2/1 was made in the Teliochordon, in 1788 by Charles Clagget (Ireland, 1740? - 1820), a little extract <a class="wiki_link_ext" href="http://ml.oxfordjournals.org/content/76/2/291.extract.jpg" rel="nofollow">here</a>.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x39 tone equal temperament-39-EDO Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 --><u><strong>39-EDO Intervals</strong></u></h2> <table class="wiki_table"> <tr> <td><strong>ARMODUE NOMENCLATURE 5;2 RELATION</strong><br /> </td> </tr> <tr> <td><ul><li><strong>‡</strong> = Semisharp (1/5-tone up)</li><li><strong>b</strong> = Flat (3/5-tone down)</li><li><strong>#</strong> = Sharp (3/5-tone up)</li><li><strong>v</strong> = Semiflat (1/5-tone down)</li></ul></td> </tr> </table> <br /> <table class="wiki_table"> <tr> <th><strong>Degrees</strong><br /> </th> <th><strong>Armodue note</strong><br /> </th> <th><strong>Cents size</strong><br /> </th> <th><strong><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Nearest%20just%20interval">Nearest Just I</a>nterval</strong><br /> </th> <th><strong>Cents value</strong><br /> </th> <th><strong>Error</strong><br /> </th> <th>11-limit Ratio Assuming<br /> <39 62 91 110 135| <a class="wiki_link" href="/Val">Val</a><br /> </th> </tr> <tr> <td>0<br /> </td> <td>1<br /> </td> <td>0<br /> </td> <td>1/1<br /> </td> <td>0<br /> </td> <td>None<br /> </td> <td>1/1<br /> </td> </tr> <tr> <td>1<br /> </td> <td>1‡ (9#)<br /> </td> <td>30.7692<br /> </td> <td>57/56<br /> </td> <td>30.6421<br /> </td> <td>+0.1271<br /> </td> <td><br /> </td> </tr> <tr> <td>2<br /> </td> <td>2b<br /> </td> <td>61.5385<br /> </td> <td>29/28<br /> </td> <td>60.7513<br /> </td> <td>+0.7872<br /> </td> <td><br /> </td> </tr> <tr> <td>3<br /> </td> <td>1#<br /> </td> <td>92.3077<br /> </td> <td>39/37<br /> </td> <td>91.1386<br /> </td> <td>+1.1691<br /> </td> <td><br /> </td> </tr> <tr> <td>4<br /> </td> <td>2v<br /> </td> <td>123.0769<br /> </td> <td>44/41<br /> </td> <td>122.2555<br /> </td> <td>+0.8214<br /> </td> <td><br /> </td> </tr> <tr> <td>5<br /> </td> <td>2<br /> </td> <td>153.8462<br /> </td> <td>35/32<br /> </td> <td>155.1396<br /> </td> <td>-1.2934<br /> </td> <td>12/11, 11/10<br /> </td> </tr> <tr> <td>6<br /> </td> <td>2‡<br /> </td> <td>184.6154<br /> </td> <td>10/9<br /> </td> <td>182.4037<br /> </td> <td>+2.2117<br /> </td> <td>10/9<br /> </td> </tr> <tr> <td>7<strong>·</strong><br /> </td> <td>3b<br /> </td> <td>215.3846<br /> </td> <td>17/15<br /> </td> <td>216.6867<br /> </td> <td>-1.3021<br /> </td> <td>8/7, 9/8<br /> </td> </tr> <tr> <td>8<br /> </td> <td>2#<br /> </td> <td>246.1538<br /> </td> <td>15/13<br /> </td> <td>247.7411<br /> </td> <td>-1.5873<br /> </td> <td><br /> </td> </tr> <tr> <td>9<br /> </td> <td>3v<br /> </td> <td>276.9231<br /> </td> <td>27/23<br /> </td> <td>277.5907<br /> </td> <td>-0.6676<br /> </td> <td>7/6<br /> </td> </tr> <tr> <td>10<br /> </td> <td>3<br /> </td> <td>307.6923<br /> </td> <td>43/36<br /> </td> <td>307.6077<br /> </td> <td>+0.0846<br /> </td> <td>6/5<br /> </td> </tr> <tr> <td>11<br /> </td> <td>3‡<br /> </td> <td>338.4615<br /> </td> <td>17/14<br /> </td> <td>336.1295<br /> </td> <td>+2.332<br /> </td> <td>11/9<br /> </td> </tr> <tr> <td>12<strong>·</strong><br /> </td> <td>4b<br /> </td> <td>369.2308<br /> </td> <td>26/21<br /> </td> <td>369.7468<br /> </td> <td>-0.516<br /> </td> <td><br /> </td> </tr> <tr> <td>13<br /> </td> <td>3#<br /> </td> <td>400<br /> </td> <td>34/27<br /> </td> <td>399.0904<br /> </td> <td>+0.9096<br /> </td> <td>5/4<br /> </td> </tr> <tr> <td>14<br /> </td> <td>4v (5b)<br /> </td> <td>430.7692<br /> </td> <td>41/32<br /> </td> <td>429.0624<br /> </td> <td>+1.7068<br /> </td> <td>9/7, 14/11<br /> </td> </tr> <tr> <td>15<br /> </td> <td>4<br /> </td> <td>461.5385<br /> </td> <td>30/23<br /> </td> <td>459.9944<br /> </td> <td>+1.5441<br /> </td> <td><br /> </td> </tr> <tr> <td>16<br /> </td> <td>4‡ (5v)<br /> </td> <td>492.3077<br /> </td> <td>85/64<br /> </td> <td>491.2691<br /> </td> <td>+1.0386<br /> </td> <td>4/3<br /> </td> </tr> <tr> <td>17<strong>·</strong><br /> </td> <td>5<br /> </td> <td>523.0769<br /> </td> <td>23/17<br /> </td> <td>523.3189<br /> </td> <td>-0.242<br /> </td> <td><br /> </td> </tr> <tr> <td>18<br /> </td> <td>5‡ (4#)<br /> </td> <td>553.8462<br /> </td> <td>11/8<br /> </td> <td>551.3179<br /> </td> <td>+2.5283<br /> </td> <td>11/8<br /> </td> </tr> <tr> <td>19<br /> </td> <td>6b<br /> </td> <td>584.6154<br /> </td> <td>7/5<br /> </td> <td>582.5122<br /> </td> <td>+2.1032<br /> </td> <td>7/5<br /> </td> </tr> <tr> <td>20<br /> </td> <td>5#<br /> </td> <td>615.3846<br /> </td> <td>10/7<br /> </td> <td>617.4878<br /> </td> <td>-2.1032<br /> </td> <td>10/7<br /> </td> </tr> <tr> <td>21<br /> </td> <td>6v<br /> </td> <td>646.1538<br /> </td> <td>16/11<br /> </td> <td>648.6821<br /> </td> <td>-2.5283<br /> </td> <td>16/11<br /> </td> </tr> <tr> <td>22<strong>·</strong><br /> </td> <td>6<br /> </td> <td>676.9231<br /> </td> <td>34/23<br /> </td> <td>676.6811<br /> </td> <td>+0.242<br /> </td> <td><br /> </td> </tr> <tr> <td>23<br /> </td> <td>6‡<br /> </td> <td>707.6923<br /> </td> <td>128/85<br /> </td> <td>708.7309<br /> </td> <td>-1.0386<br /> </td> <td>3/2<br /> </td> </tr> <tr> <td>24<br /> </td> <td>7b<br /> </td> <td>738.4615<br /> </td> <td>23/15<br /> </td> <td>740.0056<br /> </td> <td>-1.5441<br /> </td> <td><br /> </td> </tr> <tr> <td>25<br /> </td> <td>6#<br /> </td> <td>769.2308<br /> </td> <td>64/41<br /> </td> <td>770.9376<br /> </td> <td>-1.7068<br /> </td> <td>14/9, 11/7<br /> </td> </tr> <tr> <td>26<br /> </td> <td>7v<br /> </td> <td>800<br /> </td> <td>27/17<br /> </td> <td>800.9096<br /> </td> <td>-0.9096<br /> </td> <td>8/5<br /> </td> </tr> <tr> <td>27<strong>·</strong><br /> </td> <td>7<br /> </td> <td>830.7692<br /> </td> <td>21/13<br /> </td> <td>830.2532<br /> </td> <td>+0.516<br /> </td> <td><br /> </td> </tr> <tr> <td>28<br /> </td> <td>7‡<br /> </td> <td>861.5385<br /> </td> <td>28/17<br /> </td> <td>863.8705<br /> </td> <td>-2.332<br /> </td> <td>18/11<br /> </td> </tr> <tr> <td>29<br /> </td> <td>8b<br /> </td> <td>892.3077<br /> </td> <td>72/43<br /> </td> <td>892.3923<br /> </td> <td>-0.0846<br /> </td> <td>5/3<br /> </td> </tr> <tr> <td>30<br /> </td> <td>7#<br /> </td> <td>923.0769<br /> </td> <td>46/27<br /> </td> <td>922.4093<br /> </td> <td>+0.6676<br /> </td> <td>12/7<br /> </td> </tr> <tr> <td>31<br /> </td> <td>8v<br /> </td> <td>953.8462<br /> </td> <td>26/15<br /> </td> <td>952.2589<br /> </td> <td>+1.5873<br /> </td> <td><br /> </td> </tr> <tr> <td>32<strong>·</strong><br /> </td> <td>8<br /> </td> <td>984.6154<br /> </td> <td>30/17<br /> </td> <td>983.3133<br /> </td> <td>+1.3021<br /> </td> <td>7/4, 16/9<br /> </td> </tr> <tr> <td>33<br /> </td> <td>8‡<br /> </td> <td>1015.3846<br /> </td> <td>9/5<br /> </td> <td>1017.5963<br /> </td> <td>-2.2117<br /> </td> <td>9/5<br /> </td> </tr> <tr> <td>34<br /> </td> <td>9b<br /> </td> <td>1046.1538<br /> </td> <td>64/35<br /> </td> <td>1044.8604<br /> </td> <td>+1.2934<br /> </td> <td>11/6, 20/11<br /> </td> </tr> <tr> <td>35<br /> </td> <td>8#<br /> </td> <td>1076.9231<br /> </td> <td>41/22<br /> </td> <td>1077.7445<br /> </td> <td>-0.8214<br /> </td> <td><br /> </td> </tr> <tr> <td>36<br /> </td> <td>9v (1b)<br /> </td> <td>1107.6923<br /> </td> <td>74/39<br /> </td> <td>1108.8614<br /> </td> <td>-1.1691<br /> </td> <td><br /> </td> </tr> <tr> <td>37<br /> </td> <td>9<br /> </td> <td>1138.4615<br /> </td> <td>56/29<br /> </td> <td>1139.2487<br /> </td> <td>-0.7872<br /> </td> <td><br /> </td> </tr> <tr> <td>38<br /> </td> <td>9‡ (1v)<br /> </td> <td>1169.2308<br /> </td> <td>112/57<br /> </td> <td>1169.3579<br /> </td> <td>-0.1271<br /> </td> <td><br /> </td> </tr> <tr> <td>39<strong>··</strong>(or 0)<br /> </td> <td>1<br /> </td> <td>1200<br /> </td> <td>2/1<br /> </td> <td>1200<br /> </td> <td>None<br /> </td> <td><br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="x39 tone equal temperament-Instruments (prototypes):"></a><!-- ws:end:WikiTextHeadingRule:4 --><u>Instruments (prototypes):</u></h2> <br /> <!-- ws:start:WikiTextLocalImageRule:686:<img src="/file/view/TECLADO%2039-EDD.PNG/390052498/800x467/TECLADO%2039-EDD.PNG" alt="" title="" style="height: 467px; width: 800px;" /> --><img src="/file/view/TECLADO%2039-EDD.PNG/390052498/800x467/TECLADO%2039-EDD.PNG" alt="TECLADO 39-EDD.PNG" title="TECLADO 39-EDD.PNG" style="height: 467px; width: 800px;" /><!-- ws:end:WikiTextLocalImageRule:686 --><br /> <em>An illustrative image of a 39-ED2 keyboard</em><br /> <!-- ws:start:WikiTextLocalImageRule:687:<img src="http://xenharmonic.wikispaces.com/file/view/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png/258445130/826x203/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" alt="39-EDD fretboard visualization" title="39-EDD fretboard visualization" style="height: 203px; width: 826px;" /> --><table class="captionBox"><tr><td class="captionedImage"><img src="http://xenharmonic.wikispaces.com/file/view/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png/258445130/826x203/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" alt="Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" title="Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" style="height: 203px; width: 826px;" /></td></tr><tr><td class="imageCaption">39-EDD fretboard visualization</td></tr></table><!-- ws:end:WikiTextLocalImageRule:687 --><br /> <br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><a name="x39 tone equal temperament-39 tone equal modes:"></a><!-- ws:end:WikiTextHeadingRule:6 --><strong><u>39 tone equal <a class="wiki_link" href="http://xenharmonic.wikispaces.com/modes">modes</a></u>:</strong></h2> <br /> 15 15 9 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/2L%201s">2L 1s</a><br /> 14 14 11 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/2L%201s">2L 1s</a><br /> 13 13 13 = <a class="wiki_link" href="http://xenharmonic.wikispaces.com/3edo">3edo</a><br /> 11 11 11 6 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/3L%201s">3L 1s</a><br /> 10 10 10 9 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/3L%201s">3L 1s</a><br /> 11 3 11 11 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%202s">3L 2s (Father pentatonic)</a><br /> 11 3 11 3 11 - <span style="cursor: pointer;"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a></span> of type <span style="color: #660000; cursor: pointer;"><a class="wiki_link" href="/3L%202s">3L 2s (Father pentatonic)</a></span><br /> 9 6 9 9 6 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%202s">3L 2s (Father pentatonic)</a><br /> 9 6 9 6 9 - <span style="cursor: pointer;"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a></span> of type <span style="color: #660000; cursor: pointer;"><a class="wiki_link" href="/3L%202s">3L 2s (Father pentatonic)</a></span><br /> 9 9 9 9 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/4L%201s">4L 1s (Bug pentatonic)</a><br /> 9 3 9 9 9 - <span style="cursor: pointer;"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a></span> of type <span style="color: #660000; cursor: pointer;"><a class="wiki_link" href="/4L%201s">4L 1s (Bug pentatonic)</a></span><br /> 8 8 8 8 7 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/4L%201s">4L 1s (Bug pentatonic)</a><br /> 10 3 10 3 10 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (Augmented hexatonic)</a><br /> 9 4 9 4 9 4 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (Augmented hexatonic)</a><br /> 8 5 8 5 8 5 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (Augmented hexatonic)</a><br /> 7 7 7 7 7 4 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5L%201s">5L 1s (Grumpy hexatonic)</a><br /> 7 4 7 7 7 7 - <span style="cursor: pointer;"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a></span> of type <span style="cursor: pointer;"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/5L%201s">5L 1s (Grumpy hexatonic)</a></span><br /> 3 9 3 9 3 9 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%204s">3L 4s (Mosh heptatonic)</a><br /> 5 5 7 5 5 5 7 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/2L%205s">2L 5s (heptatonic Mavila Anti-Diatonic)</a><br /> 5 5 5 7 5 5 7 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/2L%205s">2L 5s (heptatonic Mavila Anti-Diatonic)</a><br /> 5 7 5 5 7 5 5 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/2L%205s">2L 5s (heptatonic Mavila Anti-Diatonic)</a><br /> 6 3 6 6 3 6 6 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/5L%203s">5L 3s (unfair Father octatonic)</a><br /> 5 5 5 5 5 5 5 4 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7L%201s">7L 1s (Grumpy octatonic)</a><br /> 5 4 5 5 5 5 5 5 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7L%201s">7L 1s (Grumpy octatonic)</a><br /> <strong>5 5 5 2 5 5 5 5 2</strong> - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/7L%202s">7L 2s (nonatonic Mavila Superdiatonic)</a><br /> 5 5 2 5 5 5 2 5 5 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/7L%202s">7L 2s (nonatonic Mavila Superdiatonic)</a><br /> 5 5 3 5 5 3 5 5 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/6L%203s">6L 3s (unfair Augmented nonatonic)</a><br /> 5 4 4 5 4 4 5 4 4 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%206s">3L 6s (fair Augmented nonatonic)</a><br /> 4 4 4 4 4 4 4 4 4 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/9L%201s">9L 1s (Grumpy decatonic)</a><br /> 4 4 3 4 4 4 4 4 4 4 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/9L%201s">9L 1s (Grumpy decatonic)</a><br /> <strong>3 3 5 3 3 3 5 3 3 3 5</strong> - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%208s">3L 8s (Anti-Sensi hendecatonic)</a><br /> 3 3 3 3 3 3 3 3 3 3 3 3 3 = <a class="wiki_link" href="http://xenharmonic.wikispaces.com/13edo">13edo</a><br /> <strong>3 3 3 2 3 3 3 3 2 3 3 3 3 2</strong> - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/11L%203s">11L 3s (Ketradektriatoh tetradecatonic)</a><br /> 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/9L%206s">9L 6s</a><br /> 3 2 3 2 3 2 2 3 2 3 2 3 2 3 2 2 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7L%209s">7L 9s</a><br /> <strong>2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 2 3</strong> - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5L%2012s">5L 12s</a><br /> 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/3L%2015s">3L 15s</a><br /> <strong>3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3</strong> - <span style="cursor: pointer;"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a></span> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/10L%209s">10L 9s</a><br /> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/19L%201s">19L 1s</a><br /> 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/17L%205s">17L 5s</a><br /> <strong>2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1</strong> - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/16L%207s">16L 7s</a><br /> 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/13L%2013s">13L 13s</a><br /> <strong>2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1</strong> - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/10L%2019s">10L 19s</a><br /> 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/8L%2023s">8L 23s</a></body></html>