37edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 318671030 - Original comment: **
Wikispaces>guest
**Imported revision 318787382 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-04-09 05:46:23 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-04-09 13:09:04 UTC</tt>.<br>
: The original revision id was <tt>318671030</tt>.<br>
: The original revision id was <tt>318787382</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th [[prime numbers|prime]] edo, following [[31edo]] and coming before [[41edo]].
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/31edo|31edo]] and coming before [[xenharmonic/41edo|41edo]].


Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[porcupine]] temperament. Using its alternative flat fifth, it tempers out 16875/16384, making it a [[negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[gorgo]]/[[laconic]]).
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[xenharmonic/porcupine|porcupine]] temperament. Using its alternative flat fifth, it tempers out 16875/16384, making it a [[xenharmonic/negri|negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[xenharmonic/gorgo|gorgo]]/[[xenharmonic/laconic|laconic]]).


37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS.
37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS.
Line 17: Line 17:


=Subgroups=  
=Subgroups=  
37edo offers close approximations to [[OverToneSeries|harmonics]] 5, 7, 11, and 13 [and a usable approximation of 9 as well].
37edo offers close approximations to [[xenharmonic/OverToneSeries|harmonics]] 5, 7, 11, and 13 [and a usable approximation of 9 as well].


12\37 = 389.2 cents
12\37 = 389.2 cents
Line 25: Line 25:
[6\37edo = 194.6 cents]
[6\37edo = 194.6 cents]


This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger [[k*N subgroups|3*37 subgroup]] 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et.
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger [[xenharmonic/k*N subgroups|3*37 subgroup]] 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et.


=The Two Fifths=  
=The Two Fifths=  
The just [[perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:
The just [[xenharmonic/perfect fifth|perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:


The flat fifth is 21\37 = 681.1 cents
The flat fifth is 21\37 = 681.1 cents
Line 41: Line 41:
"major third" = 14\37 = 454.1 cents
"major third" = 14\37 = 454.1 cents


If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[The Biosphere|Biome]] temperament.
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[xenharmonic/The Biosphere|Biome]] temperament.


Interestingly, the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.
Interestingly, the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.
Line 96: Line 96:
=Scales=  
=Scales=  


[[MOS Scales of 37edo]]
[[xenharmonic/MOS Scales of 37edo|MOS Scales of 37edo]]


[[roulette6]]
[[xenharmonic/roulette6|roulette6]]
[[roulette7]]
[[xenharmonic/roulette7|roulette7]]
[[roulette13]]
[[xenharmonic/roulette13|roulette13]]
[[roulette19]]
[[xenharmonic/roulette19|roulette19]]


[[Chromatic pairs#Shoe|Shoe]]
[[xenharmonic/Chromatic pairs#Shoe|Shoe]]


[[37ED4]]
[[xenharmonic/37ED4|37ED4]]


[[square root of 13 over 10|The Square Root of 13/10]]
[[xenharmonic/square root of 13 over 10|The Square Root of 13/10]]


=Linear temperaments=  
=Linear temperaments=  
Line 113: Line 113:
||~ Generator ||~ "Sharp 3/2" temperaments ||~ "Flat 3/2" temperaments (37b val) ||
||~ Generator ||~ "Sharp 3/2" temperaments ||~ "Flat 3/2" temperaments (37b val) ||
|| 1\37 ||  ||  ||
|| 1\37 ||  ||  ||
|| 2\37 || [[Sycamore family|Sycamore]] ||  ||
|| 2\37 || [[xenharmonic/Sycamore family|Sycamore]] ||  ||
|| 3\37 || [[Passion]] ||  ||
|| 3\37 || [[xenharmonic/Passion|Passion]] ||  ||
|| 4\37 || [[Twothirdtonic]] || [[Negri]] ||
|| 4\37 || [[xenharmonic/Twothirdtonic|Twothirdtonic]] || [[xenharmonic/Negri|Negri]] ||
|| 5\37 || [[Porcupine]]/[[The Biosphere#Oceanfront-Oceanfront%20Children-Porcupinefish|porcupinefish]] ||  ||
|| 5\37 || [[xenharmonic/Porcupine|Porcupine]]/[[xenharmonic/The Biosphere#Oceanfront-Oceanfront%20Children-Porcupinefish|porcupinefish]] ||  ||
|| 6\37 |||| [[Chromatic pairs#Roulette|Roulette]] ||
|| 6\37 |||| [[xenharmonic/Chromatic pairs#Roulette|Roulette]] ||
|| 7\37 || [[Semaja]] || [[Gorgo]]/[[Laconic]] ||
|| 7\37 || [[xenharmonic/Semaja|Semaja]] || [[xenharmonic/Gorgo|Gorgo]]/[[xenharmonic/Laconic|Laconic]] ||
|| 8\37 ||  ||  ||
|| 8\37 ||  ||  ||
|| 9\37 ||  ||  ||
|| 9\37 ||  ||  ||
|| 10\37 ||  ||  ||
|| 10\37 ||  ||  ||
|| 11\37 || [[Beatles]] ||  ||
|| 11\37 || [[xenharmonic/Beatles|Beatles]] ||  ||
|| 12\37 || [[Würschmidt]] (out-of-tune) ||  ||
|| 12\37 || [[xenharmonic/Würschmidt|Würschmidt]] (out-of-tune) ||  ||
|| 13\37 ||  ||  ||
|| 13\37 ||  ||  ||
|| 14\37 || [[Ammonite]] ||  ||
|| 14\37 || [[xenharmonic/Ammonite|Ammonite]] ||  ||
|| 15\37 || **Not** [[superpyth]] ||  ||
|| 15\37 || [[The Biosphere#Oceanfront-Oceanfront%20Children-Ultrapyth|Ultrapyth]], **not** [[xenharmonic/superpyth|superpyth]] ||  ||
|| 16\37 ||  || **Not** [[mavila]] (this is "undecimation") ||
|| 16\37 ||  || **Not** [[xenharmonic/mavila|mavila]] (this is "undecimation") ||
|| 17\37 || [[Emka]] ||  ||
|| 17\37 || [[xenharmonic/Emka|Emka]] ||  ||
|| 18\37 ||  ||  ||
|| 18\37 ||  ||  ||




==Music in 37edo==  
==Music in 37edo==  
[[http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3|Toccata Bianca 37edo]] by [[http://www.akjmusic.com|Aaron Krister Johnson]]
[[http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3|Toccata Bianca 37edo]] by [[http://www.akjmusic.com/|Aaron Krister Johnson]]
[[@http://andrewheathwaite.bandcamp.com/track/shorn-brown|Shorn Brown]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2002%20Shorn%20Brown.mp3|play]] and [[@http://andrewheathwaite.bandcamp.com/track/jellybear|Jellybear]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2003%20Jellybear.mp3|play]] by [[Andrew Heathwaite]]
[[@http://andrewheathwaite.bandcamp.com/track/shorn-brown|Shorn Brown]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2002%20Shorn%20Brown.mp3|play]] and [[@http://andrewheathwaite.bandcamp.com/track/jellybear|Jellybear]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2003%20Jellybear.mp3|play]] by [[xenharmonic/Andrew Heathwaite|Andrew Heathwaite]]


==Links==
==Links==  
[[http://tonalsoft.com/enc/number/37-edo/37edo.aspx|37edo at Tonalsoft]]</pre></div>
[[http://tonalsoft.com/enc/number/37-edo/37edo.aspx|37edo at Tonalsoft]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;37edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th &lt;a class="wiki_link" href="/prime%20numbers"&gt;prime&lt;/a&gt; edo, following &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; and coming before &lt;a class="wiki_link" href="/41edo"&gt;41edo&lt;/a&gt;.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;37edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers"&gt;prime&lt;/a&gt; edo, following &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo"&gt;31edo&lt;/a&gt; and coming before &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/41edo"&gt;41edo&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of &lt;a class="wiki_link" href="/porcupine"&gt;porcupine&lt;/a&gt; temperament. Using its alternative flat fifth, it tempers out 16875/16384, making it a &lt;a class="wiki_link" href="/negri"&gt;negri&lt;/a&gt; tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth (&lt;a class="wiki_link" href="/gorgo"&gt;gorgo&lt;/a&gt;/&lt;a class="wiki_link" href="/laconic"&gt;laconic&lt;/a&gt;).&lt;br /&gt;
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/porcupine"&gt;porcupine&lt;/a&gt; temperament. Using its alternative flat fifth, it tempers out 16875/16384, making it a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/negri"&gt;negri&lt;/a&gt; tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth (&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/gorgo"&gt;gorgo&lt;/a&gt;/&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/laconic"&gt;laconic&lt;/a&gt;).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS.&lt;br /&gt;
37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS.&lt;br /&gt;
Line 150: Line 150:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Subgroups&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Subgroups&lt;/h1&gt;
  37edo offers close approximations to &lt;a class="wiki_link" href="/OverToneSeries"&gt;harmonics&lt;/a&gt; 5, 7, 11, and 13 [and a usable approximation of 9 as well].&lt;br /&gt;
  37edo offers close approximations to &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/OverToneSeries"&gt;harmonics&lt;/a&gt; 5, 7, 11, and 13 [and a usable approximation of 9 as well].&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
12\37 = 389.2 cents&lt;br /&gt;
12\37 = 389.2 cents&lt;br /&gt;
Line 158: Line 158:
[6\37edo = 194.6 cents]&lt;br /&gt;
[6\37edo = 194.6 cents]&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;3*37 subgroup&lt;/a&gt; 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et.&lt;br /&gt;
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/k%2AN%20subgroups"&gt;3*37 subgroup&lt;/a&gt; 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="The Two Fifths"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;The Two Fifths&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="The Two Fifths"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;The Two Fifths&lt;/h1&gt;
  The just &lt;a class="wiki_link" href="/perfect%20fifth"&gt;perfect fifth&lt;/a&gt; of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:&lt;br /&gt;
  The just &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/perfect%20fifth"&gt;perfect fifth&lt;/a&gt; of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The flat fifth is 21\37 = 681.1 cents&lt;br /&gt;
The flat fifth is 21\37 = 681.1 cents&lt;br /&gt;
Line 174: Line 174:
&amp;quot;major third&amp;quot; = 14\37 = 454.1 cents&lt;br /&gt;
&amp;quot;major third&amp;quot; = 14\37 = 454.1 cents&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of &lt;a class="wiki_link" href="/The%20Biosphere"&gt;Biome&lt;/a&gt; temperament.&lt;br /&gt;
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Biosphere"&gt;Biome&lt;/a&gt; temperament.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Interestingly, the &amp;quot;major thirds&amp;quot; of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.&lt;br /&gt;
Interestingly, the &amp;quot;major thirds&amp;quot; of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.&lt;br /&gt;
Line 804: Line 804:
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Scales&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Scales&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
&lt;a class="wiki_link" href="/MOS%20Scales%20of%2037edo"&gt;MOS Scales of 37edo&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS%20Scales%20of%2037edo"&gt;MOS Scales of 37edo&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/roulette6"&gt;roulette6&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette6"&gt;roulette6&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/roulette7"&gt;roulette7&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette7"&gt;roulette7&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/roulette13"&gt;roulette13&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette13"&gt;roulette13&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/roulette19"&gt;roulette19&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette19"&gt;roulette19&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Chromatic%20pairs#Shoe"&gt;Shoe&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Chromatic%20pairs#Shoe"&gt;Shoe&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/37ED4"&gt;37ED4&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/37ED4"&gt;37ED4&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/square%20root%20of%2013%20over%2010"&gt;The Square Root of 13/10&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/square%20root%20of%2013%20over%2010"&gt;The Square Root of 13/10&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Linear temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Linear temperaments&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Linear temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Linear temperaments&lt;/h1&gt;
Line 841: Line 841:
         &lt;td&gt;2\37&lt;br /&gt;
         &lt;td&gt;2\37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Sycamore%20family"&gt;Sycamore&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Sycamore%20family"&gt;Sycamore&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 849: Line 849:
         &lt;td&gt;3\37&lt;br /&gt;
         &lt;td&gt;3\37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Passion"&gt;Passion&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Passion"&gt;Passion&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 857: Line 857:
         &lt;td&gt;4\37&lt;br /&gt;
         &lt;td&gt;4\37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Twothirdtonic"&gt;Twothirdtonic&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Twothirdtonic"&gt;Twothirdtonic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Negri"&gt;Negri&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Negri"&gt;Negri&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 865: Line 865:
         &lt;td&gt;5\37&lt;br /&gt;
         &lt;td&gt;5\37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Porcupine"&gt;Porcupine&lt;/a&gt;/&lt;a class="wiki_link" href="/The%20Biosphere#Oceanfront-Oceanfront%20Children-Porcupinefish"&gt;porcupinefish&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Porcupine"&gt;Porcupine&lt;/a&gt;/&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Biosphere#Oceanfront-Oceanfront%20Children-Porcupinefish"&gt;porcupinefish&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 873: Line 873:
         &lt;td&gt;6\37&lt;br /&gt;
         &lt;td&gt;6\37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td colspan="2"&gt;&lt;a class="wiki_link" href="/Chromatic%20pairs#Roulette"&gt;Roulette&lt;/a&gt;&lt;br /&gt;
         &lt;td colspan="2"&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Chromatic%20pairs#Roulette"&gt;Roulette&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 879: Line 879:
         &lt;td&gt;7\37&lt;br /&gt;
         &lt;td&gt;7\37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Semaja"&gt;Semaja&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semaja"&gt;Semaja&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Gorgo"&gt;Gorgo&lt;/a&gt;/&lt;a class="wiki_link" href="/Laconic"&gt;Laconic&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Gorgo"&gt;Gorgo&lt;/a&gt;/&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Laconic"&gt;Laconic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 911: Line 911:
         &lt;td&gt;11\37&lt;br /&gt;
         &lt;td&gt;11\37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Beatles"&gt;Beatles&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Beatles"&gt;Beatles&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 919: Line 919:
         &lt;td&gt;12\37&lt;br /&gt;
         &lt;td&gt;12\37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/W%C3%BCrschmidt"&gt;Würschmidt&lt;/a&gt; (out-of-tune)&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/W%C3%BCrschmidt"&gt;Würschmidt&lt;/a&gt; (out-of-tune)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 935: Line 935:
         &lt;td&gt;14\37&lt;br /&gt;
         &lt;td&gt;14\37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Ammonite"&gt;Ammonite&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ammonite"&gt;Ammonite&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 943: Line 943:
         &lt;td&gt;15\37&lt;br /&gt;
         &lt;td&gt;15\37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;Not&lt;/strong&gt; &lt;a class="wiki_link" href="/superpyth"&gt;superpyth&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/The%20Biosphere#Oceanfront-Oceanfront%20Children-Ultrapyth"&gt;Ultrapyth&lt;/a&gt;, &lt;strong&gt;not&lt;/strong&gt; &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/superpyth"&gt;superpyth&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 953: Line 953:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;strong&gt;Not&lt;/strong&gt; &lt;a class="wiki_link" href="/mavila"&gt;mavila&lt;/a&gt; (this is &amp;quot;undecimation&amp;quot;)&lt;br /&gt;
         &lt;td&gt;&lt;strong&gt;Not&lt;/strong&gt; &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/mavila"&gt;mavila&lt;/a&gt; (this is &amp;quot;undecimation&amp;quot;)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 959: Line 959:
         &lt;td&gt;17\37&lt;br /&gt;
         &lt;td&gt;17\37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Emka"&gt;Emka&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Emka"&gt;Emka&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 977: Line 977:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Linear temperaments-Music in 37edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Music in 37edo&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Linear temperaments-Music in 37edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Music in 37edo&lt;/h2&gt;
  &lt;a class="wiki_link_ext" href="http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3" rel="nofollow"&gt;Toccata Bianca 37edo&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://www.akjmusic.com" rel="nofollow"&gt;Aaron Krister Johnson&lt;/a&gt;&lt;br /&gt;
  &lt;a class="wiki_link_ext" href="http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3" rel="nofollow"&gt;Toccata Bianca 37edo&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://www.akjmusic.com/" rel="nofollow"&gt;Aaron Krister Johnson&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/shorn-brown" rel="nofollow" target="_blank"&gt;Shorn Brown&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2002%20Shorn%20Brown.mp3" rel="nofollow"&gt;play&lt;/a&gt; and &lt;a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/jellybear" rel="nofollow" target="_blank"&gt;Jellybear&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2003%20Jellybear.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Andrew%20Heathwaite"&gt;Andrew Heathwaite&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/shorn-brown" rel="nofollow" target="_blank"&gt;Shorn Brown&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2002%20Shorn%20Brown.mp3" rel="nofollow"&gt;play&lt;/a&gt; and &lt;a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/jellybear" rel="nofollow" target="_blank"&gt;Jellybear&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2003%20Jellybear.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Andrew%20Heathwaite"&gt;Andrew Heathwaite&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Linear temperaments-Links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Links&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Linear temperaments-Links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Links&lt;/h2&gt;
&lt;a class="wiki_link_ext" href="http://tonalsoft.com/enc/number/37-edo/37edo.aspx" rel="nofollow"&gt;37edo at Tonalsoft&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;a class="wiki_link_ext" href="http://tonalsoft.com/enc/number/37-edo/37edo.aspx" rel="nofollow"&gt;37edo at Tonalsoft&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 13:09, 9 April 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author guest and made on 2012-04-09 13:09:04 UTC.
The original revision id was 318787382.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/31edo|31edo]] and coming before [[xenharmonic/41edo|41edo]].

Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of [[xenharmonic/porcupine|porcupine]] temperament. Using its alternative flat fifth, it tempers out 16875/16384, making it a [[xenharmonic/negri|negri]] tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth ([[xenharmonic/gorgo|gorgo]]/[[xenharmonic/laconic|laconic]]).

37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS.


[[toc|flat]]
----

=Subgroups= 
37edo offers close approximations to [[xenharmonic/OverToneSeries|harmonics]] 5, 7, 11, and 13 [and a usable approximation of 9 as well].

12\37 = 389.2 cents
30\37 = 973.0 cents
17\37 = 551.4 cents
26\37 = 843.2 cents
[6\37edo = 194.6 cents]

This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger [[xenharmonic/k*N subgroups|3*37 subgroup]] 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et.

=The Two Fifths= 
The just [[xenharmonic/perfect fifth|perfect fifth]] of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:

The flat fifth is 21\37 = 681.1 cents
The sharp fifth is 22\37 = 713.5 cents

21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6
"minor third" = 10\37 = 324.3 cents
"major third" = 11\37 = 356.8 cents

22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1
"minor third" = 8\37 = 259.5 cents
"major third" = 14\37 = 454.1 cents

If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of [[xenharmonic/The Biosphere|Biome]] temperament.

Interestingly, the "major thirds" of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.

37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below).

=Intervals= 
||~ Degrees of 37edo ||~ Cents Value ||~ Approximate Ratios
of 2.5.7.11.13.27 subgroup ||~ Ratios of 3 with
a sharp 3/2 ||~ Ratios of 3 with
a flat 3/2 ||~ Ratios of 9 with
194.59¢ 9/8 ||~ Ratios of 9 with
227.03¢ 9/8
(two sharp
3/2's) ||
|| 0 || 0.00 || 1/1 ||   ||   ||   ||   ||
|| 1 || 32.43 ||   ||   ||   ||   ||   ||
|| 2 || 64.86 || 28/27, 27/26 ||   ||   ||   ||   ||
|| 3 || 97.30 ||   ||   ||   ||   ||   ||
|| 4 || 129.73 || 14/13 || 13/12 || 12/11 ||   ||   ||
|| 5 || 162.16 || 11/10 || 12/11 || 13/12 ||   || 10/9 ||
|| 6 || 194.59 ||   ||   ||   || 9/8, 10/9 ||   ||
|| 7 || 227.03 || 8/7 ||   ||   ||   || 9/8 ||
|| 8 || 259.46 ||   || 7/6 ||   ||   ||   ||
|| 9 || 291.89 || 13/11, 32/27 ||   || 6/5, 7/6 ||   ||   ||
|| 10 || 324.32 ||   || 6/5 ||   ||   || 11/9 ||
|| 11 || 356.76 || 16/13, 27/22 ||   ||   || 11/9 ||   ||
|| 12 || 389.19 || 5/4 ||   ||   ||   ||   ||
|| 13 || 421.62 || 14/11 ||   ||   || 9/7 ||   ||
|| 14 || 454.05 || 13/10 ||   ||   ||   || 9/7 ||
|| 15 || 486.49 ||   || 4/3 ||   ||   ||   ||
|| 16 || 518.92 || 27/20 ||   || 4/3 ||   ||   ||
|| 17 || 551.35 || 11/8 ||   ||   || 18/13 ||   ||
|| 18 || 583.78 || 7/5 ||   ||   ||   || 18/13 ||
|| 19 || 616.22 || 10/7 ||   ||   ||   || 13/9 ||
|| 20 || 648.65 || 16/11 ||   ||   || 13/9 ||   ||
|| 21 || 681.08 || 40/27 ||   || 3/2 ||   ||   ||
|| 22 || 713.51 ||   || 3/2 ||   ||   ||   ||
|| 23 || 745.95 || 20/13 ||   ||   ||   || 14/9 ||
|| 24 || 778.38 || 11/7 ||   ||   || 14/9 ||   ||
|| 25 || 810.81 || 8/5 ||   ||   ||   ||   ||
|| 26 || 843.24 || 13/8, 44/27 ||   ||   || 18/11 ||   ||
|| 27 || 875.68 ||   || 5/3 ||   ||   || 18/11 ||
|| 28 || 908.11 || 22/13, 27/16 ||   || 5/3, 12/7 ||   ||   ||
|| 29 || 940.54 ||   || 12/7 ||   ||   ||   ||
|| 30 || 972.97 || 7/4 ||   ||   ||   || 16/9 ||
|| 31 || 1005.41 ||   ||   ||   || 16/9, 9/5 ||   ||
|| 32 || 1037.84 || 20/11 || 11/6 || 24/13 ||   || 9/5 ||
|| 33 || 1070.27 || 13/7 || 24/13 || 11/6 ||   ||   ||
|| 34 || 1102.70 ||   ||   ||   ||   ||   ||
|| 35 || 1135.14 || 27/14, 52/27 ||   ||   ||   ||   ||
|| 36 || 1167.57 ||   ||   ||   ||   ||   ||

=Scales= 

[[xenharmonic/MOS Scales of 37edo|MOS Scales of 37edo]]

[[xenharmonic/roulette6|roulette6]]
[[xenharmonic/roulette7|roulette7]]
[[xenharmonic/roulette13|roulette13]]
[[xenharmonic/roulette19|roulette19]]

[[xenharmonic/Chromatic pairs#Shoe|Shoe]]

[[xenharmonic/37ED4|37ED4]]

[[xenharmonic/square root of 13 over 10|The Square Root of 13/10]]

=Linear temperaments= 

||~ Generator ||~ "Sharp 3/2" temperaments ||~ "Flat 3/2" temperaments (37b val) ||
|| 1\37 ||   ||   ||
|| 2\37 || [[xenharmonic/Sycamore family|Sycamore]] ||   ||
|| 3\37 || [[xenharmonic/Passion|Passion]] ||   ||
|| 4\37 || [[xenharmonic/Twothirdtonic|Twothirdtonic]] || [[xenharmonic/Negri|Negri]] ||
|| 5\37 || [[xenharmonic/Porcupine|Porcupine]]/[[xenharmonic/The Biosphere#Oceanfront-Oceanfront%20Children-Porcupinefish|porcupinefish]] ||   ||
|| 6\37 |||| [[xenharmonic/Chromatic pairs#Roulette|Roulette]] ||
|| 7\37 || [[xenharmonic/Semaja|Semaja]] || [[xenharmonic/Gorgo|Gorgo]]/[[xenharmonic/Laconic|Laconic]] ||
|| 8\37 ||   ||   ||
|| 9\37 ||   ||   ||
|| 10\37 ||   ||   ||
|| 11\37 || [[xenharmonic/Beatles|Beatles]] ||   ||
|| 12\37 || [[xenharmonic/Würschmidt|Würschmidt]] (out-of-tune) ||   ||
|| 13\37 ||   ||   ||
|| 14\37 || [[xenharmonic/Ammonite|Ammonite]] ||   ||
|| 15\37 || [[The Biosphere#Oceanfront-Oceanfront%20Children-Ultrapyth|Ultrapyth]], **not** [[xenharmonic/superpyth|superpyth]] ||   ||
|| 16\37 ||   || **Not** [[xenharmonic/mavila|mavila]] (this is "undecimation") ||
|| 17\37 || [[xenharmonic/Emka|Emka]] ||   ||
|| 18\37 ||   ||   ||


==Music in 37edo== 
[[http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3|Toccata Bianca 37edo]] by [[http://www.akjmusic.com/|Aaron Krister Johnson]]
[[@http://andrewheathwaite.bandcamp.com/track/shorn-brown|Shorn Brown]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2002%20Shorn%20Brown.mp3|play]] and [[@http://andrewheathwaite.bandcamp.com/track/jellybear|Jellybear]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2003%20Jellybear.mp3|play]] by [[xenharmonic/Andrew Heathwaite|Andrew Heathwaite]]

==Links== 
[[http://tonalsoft.com/enc/number/37-edo/37edo.aspx|37edo at Tonalsoft]]

Original HTML content:

<html><head><title>37edo</title></head><body>37edo is a scale derived from dividing the octave into 37 equal steps of approximately 32.43 cents each. It is the 12th <a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers">prime</a> edo, following <a class="wiki_link" href="http://xenharmonic.wikispaces.com/31edo">31edo</a> and coming before <a class="wiki_link" href="http://xenharmonic.wikispaces.com/41edo">41edo</a>.<br />
<br />
Using its best (and sharp) fifth, 37edo tempers out 250/243, making it a variant of <a class="wiki_link" href="http://xenharmonic.wikispaces.com/porcupine">porcupine</a> temperament. Using its alternative flat fifth, it tempers out 16875/16384, making it a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/negri">negri</a> tuning. It also tempers out 2187/2000, resulting in a temperament where three minor whole tones make up a fifth (<a class="wiki_link" href="http://xenharmonic.wikispaces.com/gorgo">gorgo</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/laconic">laconic</a>).<br />
<br />
37 edo is also a very accurate equal tuning for Undecimation Temperament, which has a generator of about 519 cents; 2 generators lead to 29/16; 3 generators to 32/13; 6 generators to a 10 cent sharp 6/1; 8 generators to a very accurate 11/1 and 10 generators to 20/1. It has a 7L+2s nonatonic MOS, which in 37-edo scale degrees is 0, 1, 6, 11, 16, 17, 22, 27, 32, a scale structure reminiscent of mavila; as well as a 16 note MOS.<br />
<br />
<br />
<!-- ws:start:WikiTextTocRule:14:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --><a href="#Subgroups">Subgroups</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | <a href="#The Two Fifths">The Two Fifths</a><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --> | <a href="#Scales">Scales</a><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --> | <a href="#Linear temperaments">Linear temperaments</a><!-- ws:end:WikiTextTocRule:19 --><!-- ws:start:WikiTextTocRule:20: --><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: -->
<!-- ws:end:WikiTextTocRule:22 --><hr />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Subgroups"></a><!-- ws:end:WikiTextHeadingRule:0 -->Subgroups</h1>
 37edo offers close approximations to <a class="wiki_link" href="http://xenharmonic.wikispaces.com/OverToneSeries">harmonics</a> 5, 7, 11, and 13 [and a usable approximation of 9 as well].<br />
<br />
12\37 = 389.2 cents<br />
30\37 = 973.0 cents<br />
17\37 = 551.4 cents<br />
26\37 = 843.2 cents<br />
[6\37edo = 194.6 cents]<br />
<br />
This means 37 is quite accurate on the 2.5.7.11.13 subgroup, where it shares the same tuning as 111et. In fact, on the larger <a class="wiki_link" href="http://xenharmonic.wikispaces.com/k%2AN%20subgroups">3*37 subgroup</a> 2.27.5.7.11.13.51.57 subgroup not only shares the same tuning as 19-limit 111et, it tempers out the same commas. A simpler but less accurate approach is to use the 2*37-subgroup, 2.9.7.11.13.17.19, on which it has the same tuning and commas as 74et.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="The Two Fifths"></a><!-- ws:end:WikiTextHeadingRule:2 -->The Two Fifths</h1>
 The just <a class="wiki_link" href="http://xenharmonic.wikispaces.com/perfect%20fifth">perfect fifth</a> of frequency ratio 3:2 is not well-approximated, and falls between two intervals in 37edo:<br />
<br />
The flat fifth is 21\37 = 681.1 cents<br />
The sharp fifth is 22\37 = 713.5 cents<br />
<br />
21\37 generates an anti-diatonic, or mavila, scale: 5 5 6 5 5 5 6<br />
&quot;minor third&quot; = 10\37 = 324.3 cents<br />
&quot;major third&quot; = 11\37 = 356.8 cents<br />
<br />
22\37 generates an extreme superpythagorean scale: 7 7 1 7 7 7 1<br />
&quot;minor third&quot; = 8\37 = 259.5 cents<br />
&quot;major third&quot; = 14\37 = 454.1 cents<br />
<br />
If the minor third of 259.5 cents is mapped to 7/6, this superpythagorean scale can be thought of as a variant of <a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Biosphere">Biome</a> temperament.<br />
<br />
Interestingly, the &quot;major thirds&quot; of both systems are not 12\37 = 389.2¢, the closest approximation to 5/4 available in 37edo.<br />
<br />
37edo has great potential as a near-just xenharmonic system, with high-prime chords such as 8:10:11:13:14 with no perfect fifths available for common terrestrial progressions. The 9/8 approximation is usable but introduces error. One may choose to treat either of the intervals close to 3/2 as 3/2, introducing additional approximations with considerable error (see interval table below).<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:4 -->Intervals</h1>
 

<table class="wiki_table">
    <tr>
        <th>Degrees of 37edo<br />
</th>
        <th>Cents Value<br />
</th>
        <th>Approximate Ratios<br />
of 2.5.7.11.13.27 subgroup<br />
</th>
        <th>Ratios of 3 with<br />
a sharp 3/2<br />
</th>
        <th>Ratios of 3 with<br />
a flat 3/2<br />
</th>
        <th>Ratios of 9 with<br />
194.59¢ 9/8<br />
</th>
        <th>Ratios of 9 with<br />
227.03¢ 9/8<br />
(two sharp<br />
3/2's)<br />
</th>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0.00<br />
</td>
        <td>1/1<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>32.43<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>64.86<br />
</td>
        <td>28/27, 27/26<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>97.30<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>129.73<br />
</td>
        <td>14/13<br />
</td>
        <td>13/12<br />
</td>
        <td>12/11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>162.16<br />
</td>
        <td>11/10<br />
</td>
        <td>12/11<br />
</td>
        <td>13/12<br />
</td>
        <td><br />
</td>
        <td>10/9<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>194.59<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>9/8, 10/9<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>227.03<br />
</td>
        <td>8/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>9/8<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>259.46<br />
</td>
        <td><br />
</td>
        <td>7/6<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>291.89<br />
</td>
        <td>13/11, 32/27<br />
</td>
        <td><br />
</td>
        <td>6/5, 7/6<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>324.32<br />
</td>
        <td><br />
</td>
        <td>6/5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>11/9<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>356.76<br />
</td>
        <td>16/13, 27/22<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>11/9<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>389.19<br />
</td>
        <td>5/4<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>421.62<br />
</td>
        <td>14/11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>9/7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>454.05<br />
</td>
        <td>13/10<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>9/7<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>486.49<br />
</td>
        <td><br />
</td>
        <td>4/3<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>518.92<br />
</td>
        <td>27/20<br />
</td>
        <td><br />
</td>
        <td>4/3<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>551.35<br />
</td>
        <td>11/8<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>18/13<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>583.78<br />
</td>
        <td>7/5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>18/13<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>616.22<br />
</td>
        <td>10/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>13/9<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>648.65<br />
</td>
        <td>16/11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>13/9<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>681.08<br />
</td>
        <td>40/27<br />
</td>
        <td><br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>713.51<br />
</td>
        <td><br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>745.95<br />
</td>
        <td>20/13<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>14/9<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>778.38<br />
</td>
        <td>11/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>14/9<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>810.81<br />
</td>
        <td>8/5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>843.24<br />
</td>
        <td>13/8, 44/27<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>18/11<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>875.68<br />
</td>
        <td><br />
</td>
        <td>5/3<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>18/11<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>908.11<br />
</td>
        <td>22/13, 27/16<br />
</td>
        <td><br />
</td>
        <td>5/3, 12/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>940.54<br />
</td>
        <td><br />
</td>
        <td>12/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>972.97<br />
</td>
        <td>7/4<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>16/9<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>1005.41<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>16/9, 9/5<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>1037.84<br />
</td>
        <td>20/11<br />
</td>
        <td>11/6<br />
</td>
        <td>24/13<br />
</td>
        <td><br />
</td>
        <td>9/5<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>1070.27<br />
</td>
        <td>13/7<br />
</td>
        <td>24/13<br />
</td>
        <td>11/6<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>1102.70<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>1135.14<br />
</td>
        <td>27/14, 52/27<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>1167.57<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Scales"></a><!-- ws:end:WikiTextHeadingRule:6 -->Scales</h1>
 <br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS%20Scales%20of%2037edo">MOS Scales of 37edo</a><br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette6">roulette6</a><br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette7">roulette7</a><br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette13">roulette13</a><br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/roulette19">roulette19</a><br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Chromatic%20pairs#Shoe">Shoe</a><br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/37ED4">37ED4</a><br />
<br />
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/square%20root%20of%2013%20over%2010">The Square Root of 13/10</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Linear temperaments"></a><!-- ws:end:WikiTextHeadingRule:8 -->Linear temperaments</h1>
 <br />


<table class="wiki_table">
    <tr>
        <th>Generator<br />
</th>
        <th>&quot;Sharp 3/2&quot; temperaments<br />
</th>
        <th>&quot;Flat 3/2&quot; temperaments (37b val)<br />
</th>
    </tr>
    <tr>
        <td>1\37<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2\37<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Sycamore%20family">Sycamore</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3\37<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Passion">Passion</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>4\37<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Twothirdtonic">Twothirdtonic</a><br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Negri">Negri</a><br />
</td>
    </tr>
    <tr>
        <td>5\37<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Porcupine">Porcupine</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Biosphere#Oceanfront-Oceanfront%20Children-Porcupinefish">porcupinefish</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>6\37<br />
</td>
        <td colspan="2"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Chromatic%20pairs#Roulette">Roulette</a><br />
</td>
    </tr>
    <tr>
        <td>7\37<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semaja">Semaja</a><br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Gorgo">Gorgo</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Laconic">Laconic</a><br />
</td>
    </tr>
    <tr>
        <td>8\37<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9\37<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>10\37<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>11\37<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Beatles">Beatles</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>12\37<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/W%C3%BCrschmidt">Würschmidt</a> (out-of-tune)<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>13\37<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>14\37<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ammonite">Ammonite</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>15\37<br />
</td>
        <td><a class="wiki_link" href="/The%20Biosphere#Oceanfront-Oceanfront%20Children-Ultrapyth">Ultrapyth</a>, <strong>not</strong> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/superpyth">superpyth</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>16\37<br />
</td>
        <td><br />
</td>
        <td><strong>Not</strong> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/mavila">mavila</a> (this is &quot;undecimation&quot;)<br />
</td>
    </tr>
    <tr>
        <td>17\37<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Emka">Emka</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>18\37<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
<br />
<!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="Linear temperaments-Music in 37edo"></a><!-- ws:end:WikiTextHeadingRule:10 -->Music in 37edo</h2>
 <a class="wiki_link_ext" href="http://www.akjmusic.com/audio/toccata_bianca_37edo.mp3" rel="nofollow">Toccata Bianca 37edo</a> by <a class="wiki_link_ext" href="http://www.akjmusic.com/" rel="nofollow">Aaron Krister Johnson</a><br />
<a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/shorn-brown" rel="nofollow" target="_blank">Shorn Brown</a> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2002%20Shorn%20Brown.mp3" rel="nofollow">play</a> and <a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/jellybear" rel="nofollow" target="_blank">Jellybear</a> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2003%20Jellybear.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Andrew%20Heathwaite">Andrew Heathwaite</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="Linear temperaments-Links"></a><!-- ws:end:WikiTextHeadingRule:12 -->Links</h2>
 <a class="wiki_link_ext" href="http://tonalsoft.com/enc/number/37-edo/37edo.aspx" rel="nofollow">37edo at Tonalsoft</a></body></html>