3/2: Difference between revisions
m Categories |
No edit summary |
||
Line 17: | Line 17: | ||
Then there's the possibility of [[schismatic]] temperaments, which flatten the perfect fifth such that an approximated 5/4 is generated by stacking eight fifths downwards; however, without a notation system that properly accounts for the [[syntonic comma]] (such as [[Syntonic-Rastmic Subchroma Notation]]), the 5/4 will be invariably classified as a diminished fourth due to being enharmonic with [[8192/6561]]. | Then there's the possibility of [[schismatic]] temperaments, which flatten the perfect fifth such that an approximated 5/4 is generated by stacking eight fifths downwards; however, without a notation system that properly accounts for the [[syntonic comma]] (such as [[Syntonic-Rastmic Subchroma Notation]]), the 5/4 will be invariably classified as a diminished fourth due to being enharmonic with [[8192/6561]]. | ||
Some better (compared to 12edo) approximations of the perfect fifth are [[29edo]], [[41edo]], and [[53edo]]. Of the aforementioned systems, the latter is particularly noteworthy in regards to [[telicity]] as while | Some better (compared to 12edo) approximations of the perfect fifth are [[29edo]], [[41edo]], and [[53edo]]. Of the aforementioned systems, the latter is particularly noteworthy in regards to [[telicity]] as while 12edo is a 2-strong 3-2 telic system, 53edo is a 3-strong 3-2 telic system. | ||
== Approximations by EDOs == | == Approximations by EDOs == |