13/12: Difference between revisions

Fredg999 (talk | contribs)
Misc. edits, categories
Fredg999 (talk | contribs)
m Specified the full interval name in the article body
Line 9: Line 9:
}}
}}


In [[13-limit]] [[just intonation]], '''13/12''' is a '''neutral second''' of about 138.6¢. It is a [[superparticular]] interval, as it is found in the harmonic series between the 13th and the 12th harmonics (between [[13/8]] and [[3/2]] in the octave). It is flat of the [[11-limit]] lesser neutral second of [[12/11]] by [[144/143]] (about 12.1¢), and sharp of the 13-limit large semitone of [[14/13]] by [[169/168]] (about 10.3¢).
In [[13-limit]] [[just intonation]], '''13/12''' is the '''tridecimal neutral second''' of about 138.6¢. It is a [[superparticular]] interval, as it is found in the harmonic series between the 13th and the 12th harmonics (between [[13/8]] and [[3/2]] in the octave). It is flat of the [[11-limit]] lesser neutral second of [[12/11]] by [[144/143]] (about 12.1¢), and sharp of the 13-limit large semitone of [[14/13]] by [[169/168]] (about 10.3¢).


The neutral second in [[17edo]] is about 141.2¢, about 2.6¢ sharp of 13/12. Thus, if 10\17 (ten degrees of 17edo) is taken to approximate 3/2 and 12\17 taken to approximate 13/8, you can generate a 13-limit harmonic triad that approximates an 8:12:13 chord with a good 13/12.
The neutral second in [[17edo]] is about 141.2¢, about 2.6¢ sharp of 13/12. Thus, if 10\17 (ten degrees of 17edo) is taken to approximate 3/2 and 12\17 taken to approximate 13/8, you can generate a 13-limit harmonic triad that approximates an 8:12:13 chord with a good 13/12.