212edo: Difference between revisions
→Regular temperament properties: +amicable extensions |
+infobox |
||
Line 1: | Line 1: | ||
The '''212 equal divisions of the octave''' ('''212edo'''), or the '''212(-tone) equal temperament''' ('''212tet''', '''212et''') when viewed from a [[regular temperament]] perspective, divides the [[octave]] into 212 [[equal]] parts of 5. | {{Infobox ET | ||
| Prime factorization = 2<sup>2</sup> × 53 | |||
| Step size = 5.66038¢ | |||
| Fifth = 124\212 (701.89¢) (→ [[53edo|31\53]]) | |||
| Semitones = 20:16 (113.21¢ : 90.57¢) | |||
| Consistency = 15 | |||
}} | |||
The '''212 equal divisions of the octave''' ('''212edo'''), or the '''212(-tone) equal temperament''' ('''212tet''', '''212et''') when viewed from a [[regular temperament]] perspective, divides the [[octave]] into 212 [[equal]] parts of about 5.66 [[cent]]s each. | |||
== Theory == | == Theory == |