2L 2s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 559135183 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This tetrad has the special property that it is the smallest collection of notes which can create the feeling of "completely representing<span style="line-height: 1.5;">" a particular regular temperament in a "standard" way. However, it only works in even-numbered edxs, for it contains sqrt(x), and it becomes a very weakly "complete" representation of a regular temperament as L:s grows large.</span>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
 
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-09-13 19:02:48 UTC</tt>.<br>
: The original revision id was <tt>559135183</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This tetrad has the special property that it is the smallest collection of notes which can create the feeling of "completely representing&lt;span style="line-height: 1.5;"&gt;" a particular regular temperament in a "standard" way. However, it only works in even-numbered edxs, for it contains sqrt(x), and it becomes a very weakly "complete" representation of a regular temperament as L:s grows large.&lt;/span&gt;
Golden bi-equal tetrad: major 0-phi-phi+1-2*phi+1, minor 0-1-phi+1-phi+2/(2*phi+2)edx
Golden bi-equal tetrad: major 0-phi-phi+1-2*phi+1, minor 0-1-phi+1-phi+2/(2*phi+2)edx
in edo: major 0-370.82-600-970.82 cents, minor 0-229.18-600-829.18 cents
in edo: major 0-370.82-600-970.82 cents, minor 0-229.18-600-829.18 cents
Natural logarithm bi-equal tetrad: major 0-e-e+1-2e+1, minor 0-1-e+1-e+2/(2e+2)edx
Natural logarithm bi-equal tetrad: major 0-e-e+1-2e+1, minor 0-1-e+1-e+2/(2e+2)edx
in edo: major 0-438.635.82-600-1038.635 cents, minor 0-162.365-600-762.365 cents
in edo: major 0-438.635.82-600-1038.635 cents, minor 0-162.365-600-762.365 cents
Bi-equal wheel tetrad: major 0-pi-pi+1-tau+1, minor 0-1-pi+1-pi+2/(2*tau+2)edx
Bi-equal wheel tetrad: major 0-pi-pi+1-tau+1, minor 0-1-pi+1-pi+2/(2*tau+2)edx
in edo: major 0-455.128-600-1055.128 cents, &lt;span style="line-height: 1.5;"&gt;minor 0-144.872-600-744.872 cents&lt;/span&gt;</pre></div>
 
<h4>Original HTML content:</h4>
in edo: major 0-455.128-600-1055.128 cents, <span style="line-height: 1.5;">minor 0-144.872-600-744.872 cents</span>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;2L 2s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This tetrad has the special property that it is the smallest collection of notes which can create the feeling of &amp;quot;completely representing&lt;span style="line-height: 1.5;"&gt;&amp;quot; a particular regular temperament in a &amp;quot;standard&amp;quot; way. However, it only works in even-numbered edxs, for it contains sqrt(x), and it becomes a very weakly &amp;quot;complete&amp;quot; representation of a regular temperament as L:s grows large.&lt;/span&gt;&lt;br /&gt;
Golden bi-equal tetrad: major 0-phi-phi+1-2*phi+1, minor 0-1-phi+1-phi+2/(2*phi+2)edx&lt;br /&gt;
in edo: major 0-370.82-600-970.82 cents, minor 0-229.18-600-829.18 cents&lt;br /&gt;
Natural logarithm bi-equal tetrad: major 0-e-e+1-2e+1, minor 0-1-e+1-e+2/(2e+2)edx&lt;br /&gt;
in edo: major 0-438.635.82-600-1038.635 cents, minor 0-162.365-600-762.365 cents&lt;br /&gt;
Bi-equal wheel tetrad: major 0-pi-pi+1-tau+1, minor 0-1-pi+1-pi+2/(2*tau+2)edx&lt;br /&gt;
in edo: major 0-455.128-600-1055.128 cents, &lt;span style="line-height: 1.5;"&gt;minor 0-144.872-600-744.872 cents&lt;/span&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

This tetrad has the special property that it is the smallest collection of notes which can create the feeling of "completely representing" a particular regular temperament in a "standard" way. However, it only works in even-numbered edxs, for it contains sqrt(x), and it becomes a very weakly "complete" representation of a regular temperament as L:s grows large.

Golden bi-equal tetrad: major 0-phi-phi+1-2*phi+1, minor 0-1-phi+1-phi+2/(2*phi+2)edx

in edo: major 0-370.82-600-970.82 cents, minor 0-229.18-600-829.18 cents

Natural logarithm bi-equal tetrad: major 0-e-e+1-2e+1, minor 0-1-e+1-e+2/(2e+2)edx

in edo: major 0-438.635.82-600-1038.635 cents, minor 0-162.365-600-762.365 cents

Bi-equal wheel tetrad: major 0-pi-pi+1-tau+1, minor 0-1-pi+1-pi+2/(2*tau+2)edx

in edo: major 0-455.128-600-1055.128 cents, minor 0-144.872-600-744.872 cents