SandBox: Difference between revisions
Line 85: | Line 85: | ||
|131.507 | |131.507 | ||
|- | |- | ||
|<math>{δ_s^{-5}} {φ^10}</math> | |<math>{δ_s^{-5}} {φ^{10}}</math> | ||
|<math>\frac{(1 + \sqrt{5})^10}{1024(1 + sqrt{2})^5}</math> | |<math>\frac{(1 + \sqrt{5})^10}{1024(1 + sqrt{2})^5}</math> | ||
|701.583 | |701.583 | ||
Line 92: | Line 92: | ||
|824.281 | |824.281 | ||
|- | |- | ||
|<math>{δ_s^{-6}} {φ^11}</math> | |<math>{δ_s^{-6}} {φ^{11}}</math> | ||
|<math>\frac{(1 + \sqrt{5})^11}{2048(1 + sqrt{2})^6}</math> | |<math>\frac{(1 + \sqrt{5})^11}{2048(1 + sqrt{2})^6}</math> | ||
|''8.809'' | |''8.809'' | ||
Line 143: | Line 143: | ||
|- | |- | ||
|4 | |4 | ||
|<math> | |<math>{\sqrt[3]{φ}}^2</math> | ||
|'''555.394''' | |'''555.394''' | ||
|561.267 | |561.267 | ||
Line 150: | Line 150: | ||
|- | |- | ||
|5 | |5 | ||
|<math> | |<math>{\sqrt[6]{φ}}^5</math> | ||
|'''694.242''' | |'''694.242''' | ||
|701.583 | |701.583 | ||
Line 165: | Line 165: | ||
|- | |- | ||
|''11'' | |''11'' | ||
|<math> | |<math>{\sqrt[6]{φ}}^11</math> | ||
|''1527.332'' | |''1527.332'' | ||
| - | | - | ||
Line 188: | Line 188: | ||
|- | |- | ||
|2 | |2 | ||
|<math> | |<math>{\sqrt[11]{δ_s}}^2</math> | ||
|'''277.425''' | |'''277.425''' | ||
|280.633 | |280.633 | ||
Line 195: | Line 195: | ||
|- | |- | ||
|3 | |3 | ||
|<math> | |<math>{\sqrt[11]{δ_s}}^3</math> | ||
|'''416.145''' | |'''416.145''' | ||
|420.950 | |420.950 | ||
Line 202: | Line 202: | ||
|- | |- | ||
|4 | |4 | ||
|<math> | |<math>{\sqrt[11]{δ_s}}^4</math> | ||
|'''554.860''' | |'''554.860''' | ||
|561.267 | |561.267 | ||
Line 209: | Line 209: | ||
|- | |- | ||
|5 | |5 | ||
|<math> | |<math>{\sqrt[11]{δ_s}}^5</math> | ||
|'''693.575''' | |'''693.575''' | ||
|701.583 | |701.583 | ||
Line 216: | Line 216: | ||
|- | |- | ||
|6 | |6 | ||
|<math> | |<math>{\sqrt[11]{δ_s}}^6</math> | ||
|'''832.289''' | |'''832.289''' | ||
|833.090 | |833.090 | ||
Line 223: | Line 223: | ||
|- | |- | ||
|7 | |7 | ||
|<math> | |<math>{\sqrt[11]{δ_s}}^7</math> | ||
|'''971.004''' | |'''971.004''' | ||
|973.407 | |973.407 | ||
Line 230: | Line 230: | ||
|- | |- | ||
|8 | |8 | ||
|<math> | |<math>{\sqrt[11]{δ_s}}^8</math> | ||
|'''1109.719''' | |'''1109.719''' | ||
|1113.724 | |1113.724 | ||
Line 237: | Line 237: | ||
|- | |- | ||
|9 | |9 | ||
|<math> | |<math>{\sqrt[11]{δ_s}}^9</math> | ||
|'''1248.434''' | |'''1248.434''' | ||
|1254.040 | |1254.040 | ||
Line 244: | Line 244: | ||
|- | |- | ||
|10 | |10 | ||
|<math> | |<math>{\sqrt[11]{δ_s}}^{10}</math> | ||
|'''1387.149''' | |'''1387.149''' | ||
|1394.357 | |1394.357 |
Revision as of 10:11, 12 June 2021
This is the sandbox. To experiment with editing, click on the [Edit] tab.
The Electrum temperaments are a type of rank-2 temperaments proposed by Iwuqety, inspired by the idea of using the acoustic phi (golden ratio [math]\displaystyle{ φ }[/math]) and acoustic silver ratio [math]\displaystyle{ δ_s }[/math] as generators, replacing the 3/2 perfect fifth and the 2/1 octave used in common practice music. Electrum refers to naturally occurring alloy which is mainly made up of gold and silver.
Untempered scale (arranged in quasi-Pythagorean fashion)
Hyper scale, generator = [math]\displaystyle{ φ }[/math] | Hypo scale, generator = [math]\displaystyle{ φ^{-1} }[/math] | ||||
---|---|---|---|---|---|
In terms of metallic ratios | In surd form | Absolute cents | In terms of metallic ratios | In surd form | Absolute cents |
[math]\displaystyle{ 1 }[/math] | 0 | [math]\displaystyle{ δ_s }[/math] | [math]\displaystyle{ 1 + \sqrt{2} }[/math] | 1525.864 | |
[math]\displaystyle{ φ }[/math] | [math]\displaystyle{ \frac{1 + \sqrt{5}}{2} }[/math] | 833.090 | [math]\displaystyle{ {δ_s} {φ^{-1}} }[/math] | [math]\displaystyle{ \frac{(1 + \sqrt{2})(\sqrt{5} - 1)}{2} }[/math] | 692.774 |
[math]\displaystyle{ {δ_s^{-1}} {φ^2} }[/math] | [math]\displaystyle{ \frac{(3 + \sqrt{5})(\sqrt{2} - 1)}{2} }[/math] | 140.317 | [math]\displaystyle{ {δ_s^{2}} {φ^{-2}} }[/math] | [math]\displaystyle{ \frac{(3 + 2 \sqrt{2})(3 - \sqrt{5})}{2} }[/math] | 1385.547 |
[math]\displaystyle{ {δ_s^{-1}} {φ^3} }[/math] | [math]\displaystyle{ (2 + \sqrt{5})(\sqrt{2} - 1) }[/math] | 973.407 | [math]\displaystyle{ {δ_s^{2}} {φ^{-3}} }[/math] | [math]\displaystyle{ \frac{(3 + 2 \sqrt{2})(3 - \sqrt{5})}{2} }[/math] | 552.457 |
[math]\displaystyle{ {δ_s^{-2}} {φ^4} }[/math] | [math]\displaystyle{ \frac{(1 + \sqrt{5})^4 (3 - 2\sqrt{2})}{2} }[/math] | 280.633 | [math]\displaystyle{ {δ_s^{3}} {φ^{-4}} }[/math] | [math]\displaystyle{ \frac{16(7 + 5 \sqrt{2})}{(1 + \sqrt{5})^4} }[/math] | 1245.231 |
[math]\displaystyle{ {δ_s^{-2}} {φ^5} }[/math] | [math]\displaystyle{ \frac{(1 + \sqrt{5})^5 (3 - 2\sqrt{2})}{32} }[/math] | 1113.724 | [math]\displaystyle{ {δ_s^{3}} {φ^{-5}} }[/math] | [math]\displaystyle{ \frac{16(7 + 5 \sqrt{2})}{(1 + \sqrt{5})^4} }[/math] | 412.140 |
[math]\displaystyle{ {δ_s^{-3}} {φ^6} }[/math] | [math]\displaystyle{ \frac{(1 + \sqrt{5})^6 (5\sqrt{2} - 7)}{64} }[/math] | 420.950 | [math]\displaystyle{ {δ_s^{4}} {φ^{-6}} }[/math] | [math]\displaystyle{ \frac{64(1 + \sqrt{2})^4}{(1 + \sqrt{5})^6} }[/math] | 1104.914 |
[math]\displaystyle{ {δ_s^{-3}} {φ^7} }[/math] | [math]\displaystyle{ \frac{(1 + \sqrt{5})^7 (5 - 7\sqrt{2})}{128} }[/math] | 1254.040 | [math]\displaystyle{ {δ_s^{4}} {φ^{-7}} }[/math] | [math]\displaystyle{ \frac{128(1 + \sqrt{2})^4}{(1 + \sqrt{5})^7} }[/math] | 271.824 |
[math]\displaystyle{ {δ_s^{-4}} {φ^8} }[/math] | [math]\displaystyle{ \frac{(1 + \sqrt{5})^8}{256(1 + sqrt{2})^4} }[/math] | 561.267 | [math]\displaystyle{ {δ_s^{5}} {φ^{-8}} }[/math] | [math]\displaystyle{ \frac{256(1 + \sqrt{2})^5}{(1 + \sqrt{5})^8} }[/math] | 964.597 |
[math]\displaystyle{ {δ_s^{-4}} {φ^9} }[/math] | [math]\displaystyle{ \frac{(1 + \sqrt{5})^9}{512(1 + sqrt{2})^4} }[/math] | 1394.357 | [math]\displaystyle{ {δ_s^{5}} {φ^{-9}} }[/math] | [math]\displaystyle{ \frac{512(1 + \sqrt{2})^5}{(1 + \sqrt{5})^9} }[/math] | 131.507 |
[math]\displaystyle{ {δ_s^{-5}} {φ^{10}} }[/math] | [math]\displaystyle{ \frac{(1 + \sqrt{5})^10}{1024(1 + sqrt{2})^5} }[/math] | 701.583 | [math]\displaystyle{ {δ_s^{6}} {φ^{-10}} }[/math] | [math]\displaystyle{ \frac{1024(1 + \sqrt{2})^6}{(1 + \sqrt{5})^10} }[/math] | 824.281 |
[math]\displaystyle{ {δ_s^{-6}} {φ^{11}} }[/math] | [math]\displaystyle{ \frac{(1 + \sqrt{5})^11}{2048(1 + sqrt{2})^6} }[/math] | 8.809 | [math]\displaystyle{ {δ_s^{6}} {φ^{-11}} }[/math] | [math]\displaystyle{ \frac{1024(1 + \sqrt{2})^5}{(1 + \sqrt{5})^10} }[/math] | -8.809 |
Tempering out the comma
As shown above, the largest comma between the hyper-scale and the hypo-scale, produced by the two generators [math]\displaystyle{ φ }[/math] and [math]\displaystyle{ δ_s }[/math], is a mere [math]\displaystyle{ {δ_s^{-6}} {φ^11} }[/math] ≈ 8.809¢, much smaller and more imperceptible than both the Pythagorean comma (23.460¢) and the Syntonic comma (81/80, 21.506¢). Hence, it is practically safe to temper it out:
[math]\displaystyle{ {δ_s^{-6}} {φ^11} = 1 }[/math]
[math]\displaystyle{ φ^11 = δ_s^{6} }[/math]
[math]\displaystyle{ φ = (\sqrt[11]{δ_s})^{6} }[/math] OR [math]\displaystyle{ δ_s = (\sqrt[6]{φ})^{11} }[/math]
The solution on the left provides for an equal division of [math]\displaystyle{ δ_s }[/math] into 11 notes to approximate [math]\displaystyle{ φ }[/math] as step 6\11. Reversely, the alternative solution provides for an equal division of [math]\displaystyle{ φ }[/math] into 6 notes to approximate the period [math]\displaystyle{ δ_s }[/math] with 5 extra steps above [math]\displaystyle{ φ }[/math]. The former equal temperament puts more weight on the silver ratio while the latter preserves the golden ratio.
Considering the archaeological analogy that electrum found in modern Anatolia contains more gold (70–90%) than electrum coins made in ancient Lydia (45–55%), 6ed-[math]\displaystyle{ φ }[/math] and 11ed-[math]\displaystyle{ δ_s }[/math] may be nicknamed "Anatolian Electrum" and "Lydian Electrum" respectively. Their intervals and differences with the untempered Electrum scales are listed below.
Step | In terms of [math]\displaystyle{ φ }[/math] | Absolute Cents | Closest hyper-interval (¢) | Closest hypo-interval (¢) | Difference (¢) |
---|---|---|---|---|---|
1 | [math]\displaystyle{ \sqrt[6]{φ} }[/math] | 138.848 | 140.317 | 131.507 | -1.47, +7.34 |
2 | [math]\displaystyle{ \sqrt[3]{φ} }[/math] | 277.700 | 280.633 | 271.824 | -2.93, +5.88 |
3 | [math]\displaystyle{ \sqrt{φ} }[/math] | 416.545 | 420.950 | 412.140 | -4.41, +4.41 |
4 | [math]\displaystyle{ {\sqrt[3]{φ}}^2 }[/math] | 555.394 | 561.267 | 552.457 | -5.87, +2.94 |
5 | [math]\displaystyle{ {\sqrt[6]{φ}}^5 }[/math] | 694.242 | 701.583 | 692.774 | -7.34, +1.47 |
6 | [math]\displaystyle{ φ }[/math] | 833.090 | 824.281 | 0, +8.81 | |
... | |||||
11 | [math]\displaystyle{ {\sqrt[6]{φ}}^11 }[/math] | 1527.332 | - | 1525.864 | +1.47 |
Step | In terms of [math]\displaystyle{ δ_s }[/math] | Absolute Cents | Closest hyper-interval (¢) | Closest hypo-interval (¢) | Difference (¢) |
---|---|---|---|---|---|
1 | [math]\displaystyle{ \sqrt[11]{δ_s} }[/math] | 138.715 | 140.317 | 131.507 | -1.60, +7.21 |
2 | [math]\displaystyle{ {\sqrt[11]{δ_s}}^2 }[/math] | 277.425 | 280.633 | 271.824 | -3.21, +5.60 |
3 | [math]\displaystyle{ {\sqrt[11]{δ_s}}^3 }[/math] | 416.145 | 420.950 | 412.140 | -4.81, +4.01 |
4 | [math]\displaystyle{ {\sqrt[11]{δ_s}}^4 }[/math] | 554.860 | 561.267 | 552.457 | -6.41, +2.40 |
5 | [math]\displaystyle{ {\sqrt[11]{δ_s}}^5 }[/math] | 693.575 | 701.583 | 692.774 | -8.01, +0.80 |
6 | [math]\displaystyle{ {\sqrt[11]{δ_s}}^6 }[/math] | 832.289 | 833.090 | 824.281 | -0.80, +8.01 |
7 | [math]\displaystyle{ {\sqrt[11]{δ_s}}^7 }[/math] | 971.004 | 973.407 | 964.597 | -2.40, +6.41 |
8 | [math]\displaystyle{ {\sqrt[11]{δ_s}}^8 }[/math] | 1109.719 | 1113.724 | 1104.914 | -4.01, +4.81 |
9 | [math]\displaystyle{ {\sqrt[11]{δ_s}}^9 }[/math] | 1248.434 | 1254.040 | 1245.231 | -5.60, +3.21 |
10 | [math]\displaystyle{ {\sqrt[11]{δ_s}}^{10} }[/math] | 1387.149 | 1394.357 | 1385.547 | -7.21, +1.60 |
11 | [math]\displaystyle{ δ_s }[/math] | 1525.864 | - | 1525.864 | 0 |