253edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>genewardsmith **Imported revision 217980090 - Original comment: ** |
Wikispaces>guest **Imported revision 217996960 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:guest|guest]] and made on <tt>2011-04-07 03:18:06 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>217996960</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 12: | Line 12: | ||
**253 tone equal modes** | **253 tone equal modes** | ||
43 43 19 43 43 43 19: MOS of 5L 2s (Superpythagorean Tuning) | 43 43 19 43 43 43 19: MOS of 5L 2s ([[Superpythagorean]] Tuning) | ||
41 41 24 41 41 41 24: Meantonic Tuning MOS | 41 41 24 41 41 41 24: Meantonic Tuning [[MOS]] | ||
35 35 35 35 35 35 35 8: MOS of 7L1s (Perfect Porcupine-8 Tuning (Octamonatonic Scale)) | 35 35 35 35 35 35 35 8: MOS of 7L1s (Perfect [[Porcupine-8]] Tuning (Octamonatonic Scale)) | ||
33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue-Hornbostel (Bright) Tuning) | 33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue-Hornbostel (Bright) Tuning) | ||
31 31 31 18 31 31 31 31 18: Armodue-Mesotonic (Mellow) Tuning MOS | 31 31 31 18 31 31 31 31 18: Armodue-Mesotonic (Mellow) Tuning MOS | ||
Line 25: | Line 25: | ||
<strong>253 tone equal modes</strong><br /> | <strong>253 tone equal modes</strong><br /> | ||
<br /> | <br /> | ||
43 43 19 43 43 43 19: MOS of 5L 2s (Superpythagorean Tuning)<br /> | 43 43 19 43 43 43 19: MOS of 5L 2s (<a class="wiki_link" href="/Superpythagorean">Superpythagorean</a> Tuning)<br /> | ||
41 41 24 41 41 41 24: Meantonic Tuning MOS<br /> | 41 41 24 41 41 41 24: Meantonic Tuning <a class="wiki_link" href="/MOS">MOS</a><br /> | ||
35 35 35 35 35 35 35 8: MOS of 7L1s (Perfect Porcupine-8 Tuning (Octamonatonic Scale))<br /> | 35 35 35 35 35 35 35 8: MOS of 7L1s (Perfect <a class="wiki_link" href="/Porcupine-8">Porcupine-8</a> Tuning (Octamonatonic Scale))<br /> | ||
33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue-Hornbostel (Bright) Tuning)<br /> | 33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue-Hornbostel (Bright) Tuning)<br /> | ||
31 31 31 18 31 31 31 31 18: Armodue-Mesotonic (Mellow) Tuning MOS<br /> | 31 31 31 18 31 31 31 31 18: Armodue-Mesotonic (Mellow) Tuning MOS<br /> | ||
26 26 15 26 26 26 15 26 26 26 15: Sensi-11 (or Undecimal Triatonic)</body></html></pre></div> | 26 26 15 26 26 26 15 26 26 26 15: Sensi-11 (or Undecimal Triatonic)</body></html></pre></div> |
Revision as of 03:18, 7 April 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author guest and made on 2011-04-07 03:18:06 UTC.
- The original revision id was 217996960.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=<span style="color: #630080; font-size: 113%;">253 tone equal temperament</span>= 253edo divides the octave into 253 steps of 4.743083 cents. It approximates the fifth by 148\253, which is 701.976285 cents, a mere 0.004487 cents sharp. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit [[Schismatic family|sesquiquartififths]] temperament. **253 tone equal modes** 43 43 19 43 43 43 19: MOS of 5L 2s ([[Superpythagorean]] Tuning) 41 41 24 41 41 41 24: Meantonic Tuning [[MOS]] 35 35 35 35 35 35 35 8: MOS of 7L1s (Perfect [[Porcupine-8]] Tuning (Octamonatonic Scale)) 33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue-Hornbostel (Bright) Tuning) 31 31 31 18 31 31 31 31 18: Armodue-Mesotonic (Mellow) Tuning MOS 26 26 15 26 26 26 15 26 26 26 15: Sensi-11 (or Undecimal Triatonic)
Original HTML content:
<html><head><title>253edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x253 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #630080; font-size: 113%;">253 tone equal temperament</span></h1> <br /> 253edo divides the octave into 253 steps of 4.743083 cents. It approximates the fifth by 148\253, which is 701.976285 cents, a mere 0.004487 cents sharp. The primes from 5 to 17 are all slightly flat. It tempers out 32805/32768 in the 5-limit; 2401/2400 in the 7-limit; 385/384, 1375/1372 and 4000/3993 in the 11-limit; 325/324, 1575/1573 and 2200/2197 in the 13-limit; 375/374 and 595/594 in the 17-limit. It provides a good tuning for higher-limit <a class="wiki_link" href="/Schismatic%20family">sesquiquartififths</a> temperament.<br /> <br /> <strong>253 tone equal modes</strong><br /> <br /> 43 43 19 43 43 43 19: MOS of 5L 2s (<a class="wiki_link" href="/Superpythagorean">Superpythagorean</a> Tuning)<br /> 41 41 24 41 41 41 24: Meantonic Tuning <a class="wiki_link" href="/MOS">MOS</a><br /> 35 35 35 35 35 35 35 8: MOS of 7L1s (Perfect <a class="wiki_link" href="/Porcupine-8">Porcupine-8</a> Tuning (Octamonatonic Scale))<br /> 33 33 33 11 33 33 33 33 11: MOS of 7L 2s (Armodue-Hornbostel (Bright) Tuning)<br /> 31 31 31 18 31 31 31 31 18: Armodue-Mesotonic (Mellow) Tuning MOS<br /> 26 26 15 26 26 26 15 26 26 26 15: Sensi-11 (or Undecimal Triatonic)</body></html>