23edf: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>toddiharrop **Imported revision 553789738 - Original comment: ** |
Wikispaces>toddiharrop **Imported revision 553792278 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:toddiharrop|toddiharrop]] and made on <tt>2015-06-12 | : This revision was by author [[User:toddiharrop|toddiharrop]] and made on <tt>2015-06-12 17:23:21 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>553792278</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 8: | Line 8: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Twenty-three equal divisions of the perfect fifth (23ed3/2) | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Twenty-three equal divisions of the perfect fifth (23ed3/2) | ||
Rank 1 scale with step size of 30.52 cents. | Rank 1 scale with step size of 30.52 cents. | ||
Close to 39ed2 and/or 62ed3, however, the respective octave and/or twelfth would need to be nearly 10 cents flat. | Close to 39ed2 and/or 62ed3, however, the respective | ||
octave and/or twelfth would need to be nearly 10 cents flat. | |||
A proponent of this scale is Petr Pařízek. | A proponent of this scale is Petr Pařízek. | ||
Some intervals in table below, selected on the basis of | |||
single-use of primes (for most cases): | |||
|| **Step** || **Size (cents)** || **Approx. ratio** || **Error from ratio (cents)** || | || **Step** || **Size (cents)** || **Approx. ratio** || **Error from ratio (cents)** || | ||
|| 19 || | || 19 || 579.9 || 7/5 || –2.6¢ || | ||
|| 23 || 702 || 3/2 || || | || 23 || 702 || 3/2 || || | ||
|| 24 || 732. | || 24 || 732.5 || 29/19 || +0.4¢ || | ||
|| 29 || | || 29 || 885.1 || 5/3 || +0.7¢ || | ||
|| 31 || 946. | || 31 || 946.1 || 19/11 || –0.1¢ || | ||
|| 35 || | || 35 || 1068 || 13/7 || –3.5¢ || | ||
|| 46 || 1404 || 9/4 || || | || 46 || 1404 || 9/4 || || | ||
|| 48 || | || 48 || 1465 || 7/3 || –1.9¢ || | ||
|| 52 || | || 52 || 1587 || 5/2 || +0.7¢ || | ||
|| 55 || | || 55 || 1679 || 29/11 || +0.3¢ || | ||
|| 58 || | || 58 || 1770 || 25/9 || +1.4¢ || | ||
|| 71 || | || 71 || 2167 || 7/2 || –1.9¢ || | ||
|| || || || || | || || || || || | ||
–Todd Harrop</pre></div> | –Todd Harrop</pre></div> | ||
Line 31: | Line 33: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>23edf</title></head><body>Twenty-three equal divisions of the perfect fifth (23ed3/2)<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>23edf</title></head><body>Twenty-three equal divisions of the perfect fifth (23ed3/2)<br /> | ||
<br /> | <br /> | ||
Rank 1 scale with step size of 30.52 cents. <br /> | Rank 1 scale with step size of 30.52 cents.<br /> | ||
Close to 39ed2 and/or 62ed3, however, the respective octave and/or twelfth would need to be nearly 10 cents flat. <br /> | Close to 39ed2 and/or 62ed3, however, the respective <br /> | ||
octave and/or twelfth would need to be nearly 10 cents flat.<br /> | |||
A proponent of this scale is Petr Pařízek.<br /> | A proponent of this scale is Petr Pařízek.<br /> | ||
<br /> | <br /> | ||
Some intervals in table below, selected on the basis of<br /> | |||
single-use of primes (for most cases):<br /> | |||
Line 52: | Line 56: | ||
<td>19<br /> | <td>19<br /> | ||
</td> | </td> | ||
<td> | <td>579.9<br /> | ||
</td> | </td> | ||
<td>7/5<br /> | <td>7/5<br /> | ||
Line 72: | Line 76: | ||
<td>24<br /> | <td>24<br /> | ||
</td> | </td> | ||
<td>732. | <td>732.5<br /> | ||
</td> | </td> | ||
<td>29/19<br /> | <td>29/19<br /> | ||
Line 82: | Line 86: | ||
<td>29<br /> | <td>29<br /> | ||
</td> | </td> | ||
<td> | <td>885.1<br /> | ||
</td> | </td> | ||
<td>5/3<br /> | <td>5/3<br /> | ||
Line 92: | Line 96: | ||
<td>31<br /> | <td>31<br /> | ||
</td> | </td> | ||
<td>946. | <td>946.1<br /> | ||
</td> | </td> | ||
<td>19/11<br /> | <td>19/11<br /> | ||
Line 102: | Line 106: | ||
<td>35<br /> | <td>35<br /> | ||
</td> | </td> | ||
<td> | <td>1068<br /> | ||
</td> | </td> | ||
<td>13/7<br /> | <td>13/7<br /> | ||
Line 122: | Line 126: | ||
<td>48<br /> | <td>48<br /> | ||
</td> | </td> | ||
<td> | <td>1465<br /> | ||
</td> | </td> | ||
<td>7/3<br /> | <td>7/3<br /> | ||
Line 132: | Line 136: | ||
<td>52<br /> | <td>52<br /> | ||
</td> | </td> | ||
<td> | <td>1587<br /> | ||
</td> | </td> | ||
<td>5/2<br /> | <td>5/2<br /> | ||
Line 142: | Line 146: | ||
<td>55<br /> | <td>55<br /> | ||
</td> | </td> | ||
<td> | <td>1679<br /> | ||
</td> | </td> | ||
<td>29/11<br /> | <td>29/11<br /> | ||
Line 152: | Line 156: | ||
<td>58<br /> | <td>58<br /> | ||
</td> | </td> | ||
<td> | <td>1770<br /> | ||
</td> | </td> | ||
<td>25/9<br /> | <td>25/9<br /> | ||
Line 162: | Line 166: | ||
<td>71<br /> | <td>71<br /> | ||
</td> | </td> | ||
<td> | <td>2167<br /> | ||
</td> | </td> | ||
<td>7/2<br /> | <td>7/2<br /> |
Revision as of 17:23, 12 June 2015
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author toddiharrop and made on 2015-06-12 17:23:21 UTC.
- The original revision id was 553792278.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
Twenty-three equal divisions of the perfect fifth (23ed3/2) Rank 1 scale with step size of 30.52 cents. Close to 39ed2 and/or 62ed3, however, the respective octave and/or twelfth would need to be nearly 10 cents flat. A proponent of this scale is Petr Pařízek. Some intervals in table below, selected on the basis of single-use of primes (for most cases): || **Step** || **Size (cents)** || **Approx. ratio** || **Error from ratio (cents)** || || 19 || 579.9 || 7/5 || –2.6¢ || || 23 || 702 || 3/2 || || || 24 || 732.5 || 29/19 || +0.4¢ || || 29 || 885.1 || 5/3 || +0.7¢ || || 31 || 946.1 || 19/11 || –0.1¢ || || 35 || 1068 || 13/7 || –3.5¢ || || 46 || 1404 || 9/4 || || || 48 || 1465 || 7/3 || –1.9¢ || || 52 || 1587 || 5/2 || +0.7¢ || || 55 || 1679 || 29/11 || +0.3¢ || || 58 || 1770 || 25/9 || +1.4¢ || || 71 || 2167 || 7/2 || –1.9¢ || || || || || || –Todd Harrop
Original HTML content:
<html><head><title>23edf</title></head><body>Twenty-three equal divisions of the perfect fifth (23ed3/2)<br /> <br /> Rank 1 scale with step size of 30.52 cents.<br /> Close to 39ed2 and/or 62ed3, however, the respective <br /> octave and/or twelfth would need to be nearly 10 cents flat.<br /> A proponent of this scale is Petr Pařízek.<br /> <br /> Some intervals in table below, selected on the basis of<br /> single-use of primes (for most cases):<br /> <table class="wiki_table"> <tr> <td><strong>Step</strong><br /> </td> <td><strong>Size (cents)</strong><br /> </td> <td><strong>Approx. ratio</strong><br /> </td> <td><strong>Error from ratio (cents)</strong><br /> </td> </tr> <tr> <td>19<br /> </td> <td>579.9<br /> </td> <td>7/5<br /> </td> <td>–2.6¢<br /> </td> </tr> <tr> <td>23<br /> </td> <td>702<br /> </td> <td>3/2<br /> </td> <td><br /> </td> </tr> <tr> <td>24<br /> </td> <td>732.5<br /> </td> <td>29/19<br /> </td> <td>+0.4¢<br /> </td> </tr> <tr> <td>29<br /> </td> <td>885.1<br /> </td> <td>5/3<br /> </td> <td>+0.7¢<br /> </td> </tr> <tr> <td>31<br /> </td> <td>946.1<br /> </td> <td>19/11<br /> </td> <td>–0.1¢<br /> </td> </tr> <tr> <td>35<br /> </td> <td>1068<br /> </td> <td>13/7<br /> </td> <td>–3.5¢<br /> </td> </tr> <tr> <td>46<br /> </td> <td>1404<br /> </td> <td>9/4<br /> </td> <td><br /> </td> </tr> <tr> <td>48<br /> </td> <td>1465<br /> </td> <td>7/3<br /> </td> <td>–1.9¢<br /> </td> </tr> <tr> <td>52<br /> </td> <td>1587<br /> </td> <td>5/2<br /> </td> <td>+0.7¢<br /> </td> </tr> <tr> <td>55<br /> </td> <td>1679<br /> </td> <td>29/11<br /> </td> <td>+0.3¢<br /> </td> </tr> <tr> <td>58<br /> </td> <td>1770<br /> </td> <td>25/9<br /> </td> <td>+1.4¢<br /> </td> </tr> <tr> <td>71<br /> </td> <td>2167<br /> </td> <td>7/2<br /> </td> <td>–1.9¢<br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> </table> –Todd Harrop</body></html>