2187/2048: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Andrew_Heathwaite
**Imported revision 282665748 - Original comment: **
Wikispaces>spt3125
**Imported revision 515319770 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-12-05 21:38:19 UTC</tt>.<br>
: This revision was by author [[User:spt3125|spt3125]] and made on <tt>2014-06-30 21:38:35 UTC</tt>.<br>
: The original revision id was <tt>282665748</tt>.<br>
: The original revision id was <tt>515319770</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //apotome//, also known as the Pythagorean chromatic semitone or the Pythagorean major semitone, is the interval 3^7/2^11 = 2187/2048 which is the chromatic semitone in the Pythagorean (3-limit) version of the diatonic scale. Unlike the situation in meantone tunings, it is larger, not smaller, than the corresponding diatonic semitone, which is the Pythagorean minor second of [[256_243|256/243]]. It measures about 113.685¢ and can be generated by stacking seven [[3_2|3/2]] perfect fifths and octave-reducing the resulting interval.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**2187/2048**
|-11 7&gt;
113.685 cents
[[media type="file" key="jid_2187_2048_pluck_adu_dr220.mp3"]] [[file:xenharmonic/jid_2187_2048_pluck_adu_dr220.mp3|sound sample]]
 
The //apotome//, also known as the Pythagorean chromatic semitone or the Pythagorean major semitone, is the interval 3^7/2^11 = 2187/2048 which is the chromatic semitone in the Pythagorean (3-limit) version of the diatonic scale. Unlike the situation in meantone tunings, it is larger, not smaller, than the corresponding diatonic semitone, which is the Pythagorean minor second of [[256_243|256/243]]. It measures about 113.and can be generated by stacking seven [[3_2|3/2]] perfect fifths and octave-reducing the resulting interval.


See: [[Gallery of Just Intervals]], [[comma]]</pre></div>
See: [[Gallery of Just Intervals]], [[comma]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;2187_2048&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;apotome&lt;/em&gt;, also known as the Pythagorean chromatic semitone or the Pythagorean major semitone, is the interval 3^7/2^11 = 2187/2048 which is the chromatic semitone in the Pythagorean (3-limit) version of the diatonic scale. Unlike the situation in meantone tunings, it is larger, not smaller, than the corresponding diatonic semitone, which is the Pythagorean minor second of &lt;a class="wiki_link" href="/256_243"&gt;256/243&lt;/a&gt;. It measures about 113.685¢ and can be generated by stacking seven &lt;a class="wiki_link" href="/3_2"&gt;3/2&lt;/a&gt; perfect fifths and octave-reducing the resulting interval.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;2187_2048&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;2187/2048&lt;/strong&gt;&lt;br /&gt;
|-11 7&amp;gt;&lt;br /&gt;
113.685 cents&lt;br /&gt;
&lt;!-- ws:start:WikiTextMediaRule:0:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file-audio/jid_2187_2048_pluck_adu_dr220.mp3?h=20&amp;amp;w=240&amp;quot; class=&amp;quot;WikiMedia WikiMediaFile&amp;quot; id=&amp;quot;wikitext@@media@@type=&amp;amp;quot;file&amp;amp;quot; key=&amp;amp;quot;jid_2187_2048_pluck_adu_dr220.mp3&amp;amp;quot;&amp;quot; title=&amp;quot;Local Media File&amp;quot;height=&amp;quot;20&amp;quot; width=&amp;quot;240&amp;quot;/&amp;gt; --&gt;&lt;embed src="/s/mediaplayer.swf" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" quality="high" width="240" height="20" wmode="transparent" flashvars="file=http%253A%252F%252Fxenharmonic.wikispaces.com%252Ffile%252Fview%252Fjid_2187_2048_pluck_adu_dr220.mp3?file_extension=mp3&amp;autostart=false&amp;repeat=false&amp;showdigits=true&amp;showfsbutton=false&amp;width=240&amp;height=20"&gt;&lt;/embed&gt;&lt;!-- ws:end:WikiTextMediaRule:0 --&gt; &lt;a href="http://xenharmonic.wikispaces.com/file/view/jid_2187_2048_pluck_adu_dr220.mp3/515315580/jid_2187_2048_pluck_adu_dr220.mp3" onclick="ws.common.trackFileLink('http://xenharmonic.wikispaces.com/file/view/jid_2187_2048_pluck_adu_dr220.mp3/515315580/jid_2187_2048_pluck_adu_dr220.mp3');"&gt;sound sample&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
The &lt;em&gt;apotome&lt;/em&gt;, also known as the Pythagorean chromatic semitone or the Pythagorean major semitone, is the interval 3^7/2^11 = 2187/2048 which is the chromatic semitone in the Pythagorean (3-limit) version of the diatonic scale. Unlike the situation in meantone tunings, it is larger, not smaller, than the corresponding diatonic semitone, which is the Pythagorean minor second of &lt;a class="wiki_link" href="/256_243"&gt;256/243&lt;/a&gt;. It measures about 113.and can be generated by stacking seven &lt;a class="wiki_link" href="/3_2"&gt;3/2&lt;/a&gt; perfect fifths and octave-reducing the resulting interval.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
See: &lt;a class="wiki_link" href="/Gallery%20of%20Just%20Intervals"&gt;Gallery of Just Intervals&lt;/a&gt;, &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
See: &lt;a class="wiki_link" href="/Gallery%20of%20Just%20Intervals"&gt;Gallery of Just Intervals&lt;/a&gt;, &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 21:38, 30 June 2014

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author spt3125 and made on 2014-06-30 21:38:35 UTC.
The original revision id was 515319770.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

**2187/2048**
|-11 7>
113.685 cents
[[media type="file" key="jid_2187_2048_pluck_adu_dr220.mp3"]] [[file:xenharmonic/jid_2187_2048_pluck_adu_dr220.mp3|sound sample]]

The //apotome//, also known as the Pythagorean chromatic semitone or the Pythagorean major semitone, is the interval 3^7/2^11 = 2187/2048 which is the chromatic semitone in the Pythagorean (3-limit) version of the diatonic scale. Unlike the situation in meantone tunings, it is larger, not smaller, than the corresponding diatonic semitone, which is the Pythagorean minor second of [[256_243|256/243]]. It measures about 113.7¢ and can be generated by stacking seven [[3_2|3/2]] perfect fifths and octave-reducing the resulting interval.

See: [[Gallery of Just Intervals]], [[comma]]

Original HTML content:

<html><head><title>2187_2048</title></head><body><strong>2187/2048</strong><br />
|-11 7&gt;<br />
113.685 cents<br />
<!-- ws:start:WikiTextMediaRule:0:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/file-audio/jid_2187_2048_pluck_adu_dr220.mp3?h=20&amp;w=240&quot; class=&quot;WikiMedia WikiMediaFile&quot; id=&quot;wikitext@@media@@type=&amp;quot;file&amp;quot; key=&amp;quot;jid_2187_2048_pluck_adu_dr220.mp3&amp;quot;&quot; title=&quot;Local Media File&quot;height=&quot;20&quot; width=&quot;240&quot;/&gt; --><embed src="/s/mediaplayer.swf" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" quality="high" width="240" height="20" wmode="transparent" flashvars="file=http%253A%252F%252Fxenharmonic.wikispaces.com%252Ffile%252Fview%252Fjid_2187_2048_pluck_adu_dr220.mp3?file_extension=mp3&autostart=false&repeat=false&showdigits=true&showfsbutton=false&width=240&height=20"></embed><!-- ws:end:WikiTextMediaRule:0 --> <a href="http://xenharmonic.wikispaces.com/file/view/jid_2187_2048_pluck_adu_dr220.mp3/515315580/jid_2187_2048_pluck_adu_dr220.mp3" onclick="ws.common.trackFileLink('http://xenharmonic.wikispaces.com/file/view/jid_2187_2048_pluck_adu_dr220.mp3/515315580/jid_2187_2048_pluck_adu_dr220.mp3');">sound sample</a><br />
<br />
The <em>apotome</em>, also known as the Pythagorean chromatic semitone or the Pythagorean major semitone, is the interval 3^7/2^11 = 2187/2048 which is the chromatic semitone in the Pythagorean (3-limit) version of the diatonic scale. Unlike the situation in meantone tunings, it is larger, not smaller, than the corresponding diatonic semitone, which is the Pythagorean minor second of <a class="wiki_link" href="/256_243">256/243</a>. It measures about 113.7¢ and can be generated by stacking seven <a class="wiki_link" href="/3_2">3/2</a> perfect fifths and octave-reducing the resulting interval.<br />
<br />
See: <a class="wiki_link" href="/Gallery%20of%20Just%20Intervals">Gallery of Just Intervals</a>, <a class="wiki_link" href="/comma">comma</a></body></html>