1L 8s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 551971800 - Original comment: **
Wikispaces>JosephRuhf
**Imported revision 565337619 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-05-23 15:24:59 UTC</tt>.<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-05 13:01:28 UTC</tt>.<br>
: The original revision id was <tt>551971800</tt>.<br>
: The original revision id was <tt>565337619</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, with a generator of up to 1/9edo (133 1/3 cents), represents temperaments like Miracle (2&lt;L&lt;3 s=1) and Negri (3&lt;L&lt;4 s=2). Of all the temperaments it represents, the harmonic entropy minimum is the one where the scale is generated by an interval near 3/28edo (L near 4 s=3).
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, with a generator of up to 1/9edo (133.333 cents), represents temperaments like Miracle (2&lt;L&lt;3 s=1) and Negri (3&lt;L&lt;4 s=2). Of all the temperaments it represents, the harmonic entropy minimum is the one where the scale is generated by an interval near 3/28edo (L near 4 s=3).
|| 0/1 ||  ||  ||  ||  || 0 ||=  ||=  ||
|| 0/1 ||  ||  ||  ||  || 0 ||=  ||=  ||
||  ||  ||  ||  || 1/13 || 92 4/13 ||=  ||=  ||
||  ||  ||  ||  || 1/13 || 92.308 ||=  ||=  ||
||  ||  ||  || 1/12 ||  || 100 ||=  ||= L/s = 4 ||
||  ||  ||  || 1/12 ||  || 100 ||=  ||= L/s = 4 ||
||  ||  ||  ||  || 2/23 || 104.347826 ||=  ||=  ||
||  ||  ||  ||  || 2/23 || 104.348 ||=  ||=  ||
||  ||  ||  ||  ||  || 1200/(8+pi)) ||  ||  ||
||  ||  ||  ||  ||  || 1200/(8+pi) ||  ||  ||
||  ||  || 1/11 ||  ||  || 109 1/11 ||= Miracle generators from here... ||= L/s = 3 ||
||  ||  || 1/11 ||  ||  || 109.091 ||= Miracle generators from here... ||= L/s = 3 ||
||  ||  ||  ||  ||  || 1200/(8+e) ||  ||  ||
||  ||  ||  ||  ||  || 1200/(8+e) ||  ||  ||
||  ||  ||  ||  || 3/32 || 112.5 ||=  ||=  ||
||  ||  ||  ||  || 3/32 || 112.5 ||=  ||=  ||
||  ||  ||  || 2/21 ||  || 114 2/7 ||=  ||=  ||
||  ||  ||  ||  ||  || 1200/(9+phi) ||  ||  ||
||  ||  ||  ||  || 3/31 || 116.129032 ||=  ||=  ||
||  ||  ||  || 2/21 ||  || 114.286 ||=  ||=  ||
||  ||  ||  ||  || 3/31 || 116.129 ||=  ||=  ||
||  || 1/10 ||  ||  ||  || 120 ||= ...to here;
||  || 1/10 ||  ||  ||  || 120 ||= ...to here;
Negri generators from here... ||= Boundary of propriety:
Negri generators from here... ||= Boundary of propriety:
generators larger than this are proper ||
generators larger than this are proper ||
||  ||  ||  ||  || 4/39 || 123 1/13 ||=  ||=  ||
||  ||  ||  ||  ||  || 1200/(8+&lt;span style="line-height: 1.5;"&gt;sqrt(3))&lt;/span&gt; ||  ||  ||
||  ||  ||  || 3/29 ||  || 124.137931 ||=  ||=  ||
||  ||  ||  ||  || 4/39 || 123.077 ||=  ||=  ||
||  ||  ||  || 3/29 ||  || 124.138 ||=  ||=   ||
||  ||  ||  ||  ||  || 1200/(8+phi) ||  ||   ||
||  ||  ||  ||  || 5/48 || 125 ||=  ||=  ||
||  ||  ||  ||  || 5/48 || 125 ||=  ||=  ||
||  ||  || 2/19 ||  ||  || 126.315789 ||= ...to here ||=  ||
||  ||  ||  ||  ||  || 1200/(8+pih) ||  ||  ||
||  ||  ||  ||  || 5/47 || 127.659574 ||=  ||=  ||
||  ||  || 2/19 ||  ||  || 126.316 ||= ...to here ||=  ||
||  ||  ||  || 3/28 ||  || 128 4/7 ||=  ||=  ||
||  ||  ||  ||  || 5/47 || 127.66 ||=  ||=  ||
||  ||  ||  ||  || 4/37 || 129 27/37 ||=  ||=  ||
||  ||  ||  || 3/28 ||  || 128.571 ||=  ||=  ||
|| 1/9 ||  ||  ||  ||  || 133 1/3 ||=  ||=  ||</pre></div>
||  ||  ||  ||  || 4/37 || 129.73 ||=  ||=  ||
|| 1/9 ||  ||  ||  ||  || 133.333 ||=  ||=  ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;1L 8s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This MOS, with a generator of up to 1/9edo (133 1/3 cents), represents temperaments like Miracle (2&amp;lt;L&amp;lt;3 s=1) and Negri (3&amp;lt;L&amp;lt;4 s=2). Of all the temperaments it represents, the harmonic entropy minimum is the one where the scale is generated by an interval near 3/28edo (L near 4 s=3).&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;1L 8s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This MOS, with a generator of up to 1/9edo (133.333 cents), represents temperaments like Miracle (2&amp;lt;L&amp;lt;3 s=1) and Negri (3&amp;lt;L&amp;lt;4 s=2). Of all the temperaments it represents, the harmonic entropy minimum is the one where the scale is generated by an interval near 3/28edo (L near 4 s=3).&lt;br /&gt;




Line 62: Line 66:
         &lt;td&gt;1/13&lt;br /&gt;
         &lt;td&gt;1/13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;92 4/13&lt;br /&gt;
         &lt;td&gt;92.308&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 98: Line 102:
         &lt;td&gt;2/23&lt;br /&gt;
         &lt;td&gt;2/23&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;104.347826&lt;br /&gt;
         &lt;td&gt;104.348&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 116: Line 120:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1200/(8+pi))&lt;br /&gt;
         &lt;td&gt;1200/(8+pi)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 134: Line 138:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;109 1/11&lt;br /&gt;
         &lt;td&gt;109.091&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;Miracle generators from here...&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Miracle generators from here...&lt;br /&gt;
Line 175: Line 179:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200/(9+phi)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 188: Line 210:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;114 2/7&lt;br /&gt;
         &lt;td&gt;114.286&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 206: Line 228:
         &lt;td&gt;3/31&lt;br /&gt;
         &lt;td&gt;3/31&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;116.129032&lt;br /&gt;
         &lt;td&gt;116.129&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 231: Line 253:
         &lt;td style="text-align: center;"&gt;Boundary of propriety:&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;Boundary of propriety:&lt;br /&gt;
generators larger than this are proper&lt;br /&gt;
generators larger than this are proper&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200/(8+&lt;span style="line-height: 1.5;"&gt;sqrt(3))&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 244: Line 284:
         &lt;td&gt;4/39&lt;br /&gt;
         &lt;td&gt;4/39&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;123 1/13&lt;br /&gt;
         &lt;td&gt;123.077&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 262: Line 302:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;124.137931&lt;br /&gt;
         &lt;td&gt;124.138&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200/(8+phi)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 285: Line 343:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200/(8+pih)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 298: Line 374:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;126.315789&lt;br /&gt;
         &lt;td&gt;126.316&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;...to here&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;...to here&lt;br /&gt;
Line 316: Line 392:
         &lt;td&gt;5/47&lt;br /&gt;
         &lt;td&gt;5/47&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;127.659574&lt;br /&gt;
         &lt;td&gt;127.66&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 334: Line 410:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;128 4/7&lt;br /&gt;
         &lt;td&gt;128.571&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 352: Line 428:
         &lt;td&gt;4/37&lt;br /&gt;
         &lt;td&gt;4/37&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;129 27/37&lt;br /&gt;
         &lt;td&gt;129.73&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
Line 370: Line 446:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;133 1/3&lt;br /&gt;
         &lt;td&gt;133.333&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;&lt;br /&gt;

Revision as of 13:01, 5 November 2015

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author JosephRuhf and made on 2015-11-05 13:01:28 UTC.
The original revision id was 565337619.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

This MOS, with a generator of up to 1/9edo (133.333 cents), represents temperaments like Miracle (2<L<3 s=1) and Negri (3<L<4 s=2). Of all the temperaments it represents, the harmonic entropy minimum is the one where the scale is generated by an interval near 3/28edo (L near 4 s=3).
|| 0/1 ||   ||   ||   ||   || 0 ||=   ||=   ||
||   ||   ||   ||   || 1/13 || 92.308 ||=   ||=   ||
||   ||   ||   || 1/12 ||   || 100 ||=   ||= L/s = 4 ||
||   ||   ||   ||   || 2/23 || 104.348 ||=   ||=   ||
||   ||   ||   ||   ||   || 1200/(8+pi) ||   ||   ||
||   ||   || 1/11 ||   ||   || 109.091 ||= Miracle generators from here... ||= L/s = 3 ||
||   ||   ||   ||   ||   || 1200/(8+e) ||   ||   ||
||   ||   ||   ||   || 3/32 || 112.5 ||=   ||=   ||
||   ||   ||   ||   ||   || 1200/(9+phi) ||   ||   ||
||   ||   ||   || 2/21 ||   || 114.286 ||=   ||=   ||
||   ||   ||   ||   || 3/31 || 116.129 ||=   ||=   ||
||   || 1/10 ||   ||   ||   || 120 ||= ...to here;
Negri generators from here... ||= Boundary of propriety:
generators larger than this are proper ||
||   ||   ||   ||   ||   || 1200/(8+<span style="line-height: 1.5;">sqrt(3))</span> ||   ||   ||
||   ||   ||   ||   || 4/39 || 123.077 ||=   ||=   ||
||   ||   ||   || 3/29 ||   || 124.138 ||=   ||=   ||
||   ||   ||   ||   ||   || 1200/(8+phi) ||   ||   ||
||   ||   ||   ||   || 5/48 || 125 ||=   ||=   ||
||   ||   ||   ||   ||   || 1200/(8+pih) ||   ||   ||
||   ||   || 2/19 ||   ||   || 126.316 ||= ...to here ||=   ||
||   ||   ||   ||   || 5/47 || 127.66 ||=   ||=   ||
||   ||   ||   || 3/28 ||   || 128.571 ||=   ||=   ||
||   ||   ||   ||   || 4/37 || 129.73 ||=   ||=   ||
|| 1/9 ||   ||   ||   ||   || 133.333 ||=   ||=   ||

Original HTML content:

<html><head><title>1L 8s</title></head><body>This MOS, with a generator of up to 1/9edo (133.333 cents), represents temperaments like Miracle (2&lt;L&lt;3 s=1) and Negri (3&lt;L&lt;4 s=2). Of all the temperaments it represents, the harmonic entropy minimum is the one where the scale is generated by an interval near 3/28edo (L near 4 s=3).<br />


<table class="wiki_table">
    <tr>
        <td>0/1<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>0<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1/13<br />
</td>
        <td>92.308<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1/12<br />
</td>
        <td><br />
</td>
        <td>100<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;">L/s = 4<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>2/23<br />
</td>
        <td>104.348<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(8+pi)<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>1/11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>109.091<br />
</td>
        <td style="text-align: center;">Miracle generators from here...<br />
</td>
        <td style="text-align: center;">L/s = 3<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(8+e)<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3/32<br />
</td>
        <td>112.5<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(9+phi)<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>2/21<br />
</td>
        <td><br />
</td>
        <td>114.286<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3/31<br />
</td>
        <td>116.129<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>1/10<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>120<br />
</td>
        <td style="text-align: center;">...to here;<br />
Negri generators from here...<br />
</td>
        <td style="text-align: center;">Boundary of propriety:<br />
generators larger than this are proper<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(8+<span style="line-height: 1.5;">sqrt(3))</span><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>4/39<br />
</td>
        <td>123.077<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3/29<br />
</td>
        <td><br />
</td>
        <td>124.138<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(8+phi)<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5/48<br />
</td>
        <td>125<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>1200/(8+pih)<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>2/19<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>126.316<br />
</td>
        <td style="text-align: center;">...to here<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5/47<br />
</td>
        <td>127.66<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3/28<br />
</td>
        <td><br />
</td>
        <td>128.571<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>4/37<br />
</td>
        <td>129.73<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td>1/9<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>133.333<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
</table>

</body></html>