Syntonic–kleismic equivalence continuum: Difference between revisions
Cleanup |
No edit summary |
||
Line 1: | Line 1: | ||
The '''syntonic-enneadecal equivalence continuum''' is a continuum of 5-limit temperaments which equate a number of [[81/80|syntonic commas (81/80)]] with the 19-comma ({{Monzo| -30 19}}). | The '''syntonic-enneadecal equivalence continuum''' is a continuum of 5-limit temperaments which equate a number of [[81/80|syntonic commas (81/80)]] with the 19-comma ({{Monzo|-30 19}}). | ||
All temperaments in the continuum satisfy (81/80)<sup>''k''</sup> ~ {{monzo|-30 19}}. Varying ''k'' results in different temperaments listed in the table below. It converges to [[meantone]] as ''k'' approaches infinity. If we allow non-integer and infinite ''k'', the continuum describes the set of all [[5-limit]] temperaments supported by [[19edo]] (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of ''k'' is approximately 6.376..., and temperaments having ''k'' near this value tend to be the most accurate ones. | All temperaments in the continuum satisfy (81/80)<sup>''k''</sup> ~ {{monzo|-30 19}}. Varying ''k'' results in different temperaments listed in the table below. It converges to [[meantone]] as ''k'' approaches infinity. If we allow non-integer and infinite ''k'', the continuum describes the set of all [[5-limit]] temperaments supported by [[19edo]] (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of ''k'' is approximately 6.376..., and temperaments having ''k'' near this value tend to be the most accurate ones. | ||
Line 16: | Line 16: | ||
|- | |- | ||
| 0 | | 0 | ||
| 19 & 19c | | 19 & 19c | ||
| [[1162261467/1073741824]] | | [[1162261467/1073741824]] | ||
| {{monzo|-30 19}} | | {{monzo|-30 19}} | ||
Line 61: | Line 61: | ||
|- | |- | ||
| 9 | | 9 | ||
| 19 & 51c | | 19 & 51c | ||
| [[129140163/125000000]] | | [[129140163/125000000]] | ||
| {{monzo|-6 17 -9}} | | {{monzo|-6 17 -9}} | ||
Line 78: | Line 78: | ||
Examples of temperaments with fractional values of ''k'': | Examples of temperaments with fractional values of ''k'': | ||
* 19 & 8c (''k'' = 3.5) | * 19 & 8c (''k'' = 3.5) | ||
* [[High badness temperaments#Unsmate|Unsmate]] (''k'' = 4.5) | * [[High badness temperaments#Unsmate|Unsmate]] (''k'' = 4.5) | ||
* [[Sycamore family#Sycamore|Sycamore]] (''k'' = 5.5) | * [[Sycamore family#Sycamore|Sycamore]] (''k'' = 5.5) | ||
* [[Counterhanson]] (''k'' = 25/4 = 6.25) | |||
* [[Enneadecal]] (''k'' = 19/3 = 6.{{overline|3}}) | * [[Enneadecal]] (''k'' = 19/3 = 6.{{overline|3}}) | ||
* [[Very high accuracy temperaments#Egads|Egads]] (''k'' = 51/8 = 6.375) | |||
* [[Acrokleismic]] (''k'' = 32/5 = 6.4) | * [[Acrokleismic]] (''k'' = 32/5 = 6.4) | ||
* 19 & 506 (''k'' = 58/9 = 6.{{overline|4}}) | * 19 & 506 (''k'' = 58/9 = 6.{{overline|4}}) | ||
* [[Parakleismic]] (''k'' = 6.5) | * [[Parakleismic]] (''k'' = 6.5) | ||
* [[Countermeantone]] (''k'' = 20/3 = 6.{{overline|6}}) | * [[Countermeantone]] (''k'' = 20/3 = 6.{{overline|6}}) | ||
* [[Mowgli]] (''k'' = 7.5) | * [[Mowgli]] (''k'' = 7.5) | ||
== | == Lalayo == | ||
[[Comma list]]: {{Monzo|-26 15 1}} = 71744535/67108864 | |||
[[Mapping]]: [{{val| 1 2 -4 }}, {{val| 0 -1 15 }}] | |||
POTE generator: | [[POTE generator]]: ~4/3 = 505.348 cents | ||
{{Val list|legend=1| 7c, 12c, 19 }} | |||
[[Badness]]: 0.803397 | |||
== 8c & 19 == | == 8c & 19 == | ||
[[Comma list]]: {{Monzo|-32 10 7}} = 4613203125/4294967296 | |||
[[Mapping]]: [{{val| 1 -1 6 }}, {{val| 0 7 -10 }}] | |||
POTE generator: 442.2674 cents | [[POTE generator]]: ~675/512 = 442.2674 cents | ||
{{Val list|legend=1| 8c, 11, 19 }} | |||
[[Badness]]: 1.061630 | |||
[http://x31eq.com/cgi-bin/rt.cgi?ets=19_8c&limit=5 The temperament finder - 5-limit 19 & 8c] | [http://x31eq.com/cgi-bin/rt.cgi?ets=19_8c&limit=5 The temperament finder - 5-limit 19 & 8c] | ||
== 19 & 506 == | == 19 & 506 == | ||
[[Comma list]]: {{Monzo| 38 61 -58 }} | |||
[[Mapping]]: [{{val| 1 26 28 }}, {{val| 0 -58 -61 }}] | |||
POTE generator: 505.1394 cents | [[POTE generator]]: ~{{monzo|-12 -20 19}} = 505.1394 cents | ||
{{Val list|legend=1| 19, 468, 487, 506, 1031 }} | |||
[[Badness]]: 2.105450 | |||
[http://x31eq.com/cgi-bin/rt.cgi?ets=19_506&limit=5 The temperament finder - 5-limit 19 & 506] | [http://x31eq.com/cgi-bin/rt.cgi?ets=19_506&limit=5 The temperament finder - 5-limit 19 & 506] | ||
== Counterhanson == | |||
[[Comma list]]: {{Monzo|-20 -24 25}} = 298023223876953125/296148833645101056 | |||
[[Mapping]]: [{{val|1 -5 -4}}, {{val|0 25 24}}] | |||
[[POTE generator]]: ~6/5 = 316.081 cents | |||
{{Val list|legend=1| 19, 148, 167, 186, 205, 224, 429, 653, 1082, 1735c }} | |||
[[Badness]]: 0.317551 | |||
== Countermeantone == | |||
[[Comma list]]: {{Monzo|10 23 -20}} = 96402615118848/95367431640625 | |||
[[Mapping]]: [{{val|1 10 12}}, {{val|0 -20 -23}}] | |||
[[POTE generator]]: ~104976/78125 = 504.913 cents | |||
{{Val list|legend=1| 19, 126, 145, 164, 183, 713, 896c, 1079c, 1262c }} | |||
[[Badness]]: 0.373477 | |||
== Mowgli == | |||
[[Comma list]]: {{Monzo|0 22 -15}} | |||
[[Mapping]]: [{{val| 1 0 0 }}, {{val| 0 15 22 }}] | |||
[[POTE generator]]: ~27/25 = 126.7237 cents | |||
{{Val list|legend=1| 19, 85c, 104c, 123, 142, 161 }} | |||
[[Badness]]: 0.653871 | |||
[[Category:19edo]] | [[Category:19edo]] |