19edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 591727032 - Original comment: **
Wikispaces>JosephRuhf
**Imported revision 595262524 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-09-12 16:30:47 UTC</tt>.<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-10-13 12:14:21 UTC</tt>.<br>
: The original revision id was <tt>591727032</tt>.<br>
: The original revision id was <tt>595262524</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:
[[@http://www.piano-stopper.de/html/onlypure_tuning.html|Bernhard Stopper's OnlyPure tuning]]
[[@http://www.piano-stopper.de/html/onlypure_tuning.html|Bernhard Stopper's OnlyPure tuning]]


Note: 19 equal divisions of the tritave is not a xenharmonic tuning; it is a slightly stretched version (with an octave of 1201.2 cents) of the normal [[@12edo|12-tone scale]]. Or if you insist that it is, it is the tritave twin of godzilla temperament (with a generator of 400.4 cents and a 3:1 ratio superdiatonic scale) or of sensi temperament &lt;span style="background-color: rgba(255,255,255,0);"&gt;(with a generator of 700.7 cents and a 2:1 ratio superdiatonic scale) or even of meantone temperament (with a generator of 1101.1 cents and a 2:1 ratio superdiatonic scale)&lt;/span&gt;.</pre></div>
Note: 19 equal divisions of the tritave is not a xenharmonic tuning; it is a slightly stretched version (with an octave of 1201.2 cents) of the normal [[@12edo|12-tone scale]]. Or if you insist that it is, it is the tritave twin of godzilla temperament (with a generator of 400.4 cents and a 3:1 ratio superdiatonic scale) or of sensi or meantone temperament &lt;span style="background-color: rgba(255,255,255,0);"&gt;(with a generator of 700.7 or &lt;/span&gt;1101.1
&lt;span style="background-color: rgba(255,255,255,0);"&gt;cents and a 2:1 ratio superdiatonic scale)&lt;/span&gt;.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;19ED3&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Division of 3/1 into 19 equal parts"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Division of 3/1 into 19 equal parts&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;19ED3&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Division of 3/1 into 19 equal parts"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Division of 3/1 into 19 equal parts&lt;/h1&gt;
Line 16: Line 17:
  &lt;a class="wiki_link_ext" href="http://www.piano-stopper.de/html/onlypure_tuning.html" rel="nofollow" target="_blank"&gt;Bernhard Stopper's OnlyPure tuning&lt;/a&gt;&lt;br /&gt;
  &lt;a class="wiki_link_ext" href="http://www.piano-stopper.de/html/onlypure_tuning.html" rel="nofollow" target="_blank"&gt;Bernhard Stopper's OnlyPure tuning&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Note: 19 equal divisions of the tritave is not a xenharmonic tuning; it is a slightly stretched version (with an octave of 1201.2 cents) of the normal &lt;a class="wiki_link" href="/12edo" target="_blank"&gt;12-tone scale&lt;/a&gt;. Or if you insist that it is, it is the tritave twin of godzilla temperament (with a generator of 400.4 cents and a 3:1 ratio superdiatonic scale) or of sensi temperament &lt;span style="background-color: rgba(255,255,255,0);"&gt;(with a generator of 700.7 cents and a 2:1 ratio superdiatonic scale) or even of meantone temperament (with a generator of 1101.1 cents and a 2:1 ratio superdiatonic scale)&lt;/span&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
Note: 19 equal divisions of the tritave is not a xenharmonic tuning; it is a slightly stretched version (with an octave of 1201.2 cents) of the normal &lt;a class="wiki_link" href="/12edo" target="_blank"&gt;12-tone scale&lt;/a&gt;. Or if you insist that it is, it is the tritave twin of godzilla temperament (with a generator of 400.4 cents and a 3:1 ratio superdiatonic scale) or of sensi or meantone temperament &lt;span style="background-color: rgba(255,255,255,0);"&gt;(with a generator of 700.7 or &lt;/span&gt;1101.1&lt;br /&gt;
&lt;span style="background-color: rgba(255,255,255,0);"&gt;cents and a 2:1 ratio superdiatonic scale)&lt;/span&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 12:14, 13 October 2016

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author JosephRuhf and made on 2016-10-13 12:14:21 UTC.
The original revision id was 595262524.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=Division of 3/1 into 19 equal parts= 
= = 
[[@http://www.piano-stopper.de/html/onlypure_tuning.html|Bernhard Stopper's OnlyPure tuning]]

Note: 19 equal divisions of the tritave is not a xenharmonic tuning; it is a slightly stretched version (with an octave of 1201.2 cents) of the normal [[@12edo|12-tone scale]]. Or if you insist that it is, it is the tritave twin of godzilla temperament (with a generator of 400.4 cents and a 3:1 ratio superdiatonic scale) or of sensi or meantone temperament <span style="background-color: rgba(255,255,255,0);">(with a generator of 700.7 or </span>1101.1
<span style="background-color: rgba(255,255,255,0);">cents and a 2:1 ratio superdiatonic scale)</span>.

Original HTML content:

<html><head><title>19ED3</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Division of 3/1 into 19 equal parts"></a><!-- ws:end:WikiTextHeadingRule:0 -->Division of 3/1 into 19 equal parts</h1>
 <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><!-- ws:end:WikiTextHeadingRule:2 --> </h1>
 <a class="wiki_link_ext" href="http://www.piano-stopper.de/html/onlypure_tuning.html" rel="nofollow" target="_blank">Bernhard Stopper's OnlyPure tuning</a><br />
<br />
Note: 19 equal divisions of the tritave is not a xenharmonic tuning; it is a slightly stretched version (with an octave of 1201.2 cents) of the normal <a class="wiki_link" href="/12edo" target="_blank">12-tone scale</a>. Or if you insist that it is, it is the tritave twin of godzilla temperament (with a generator of 400.4 cents and a 3:1 ratio superdiatonic scale) or of sensi or meantone temperament <span style="background-color: rgba(255,255,255,0);">(with a generator of 700.7 or </span>1101.1<br />
<span style="background-color: rgba(255,255,255,0);">cents and a 2:1 ratio superdiatonic scale)</span>.</body></html>