27edo: Difference between revisions
m removed common uses pending discussiom Tags: Mobile edit Mobile web edit |
m switched order: text flows around infobox so the infobox must go first |
||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET | ||
| Prime factorization = 3<sup>3</sup> | | Prime factorization = 3<sup>3</sup> | ||
Line 7: | Line 6: | ||
| Important MOSes = [[superpyth]] diatonic 5*5-2*1 (16\27, 1\1)<br/> [[augmented]] ([[augene]]) 3*2-6*1 (1\15, 1\3)<br/> [[beatles]] 3*5-4*3 (8\27, 1\1)<br/> [[beatles]] 7*3-3*2 (9\27, 1\1)<br/> [[sensi]] 3*4-5*3 (10\27, 1\1)<br/>[[tetracot]] 6*4-1*3 (4\27, 1\1)<br/>[[octacot]] 13*2-1*1 (2\27, 1\1) | | Important MOSes = [[superpyth]] diatonic 5*5-2*1 (16\27, 1\1)<br/> [[augmented]] ([[augene]]) 3*2-6*1 (1\15, 1\3)<br/> [[beatles]] 3*5-4*3 (8\27, 1\1)<br/> [[beatles]] 7*3-3*2 (9\27, 1\1)<br/> [[sensi]] 3*4-5*3 (10\27, 1\1)<br/>[[tetracot]] 6*4-1*3 (4\27, 1\1)<br/>[[octacot]] 13*2-1*1 (2\27, 1\1) | ||
}} | }} | ||
In music, '''27 equal temperament''', called '''27-tet''', '''27-edo''', or '''27-et''', is the scale derived by dividing the octave into 27 equally large steps. Each step represents a frequency ratio of the 27th root of 2, or 44.44 cents. | |||
== Theory == | == Theory == |