164edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 288013894 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 363076988 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-21 16:04:29 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-09-08 18:29:09 UTC</tt>.<br>
: The original revision id was <tt>288013894</tt>.<br>
: The original revision id was <tt>363076988</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //164 equal division// divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the würschmidt comma, 393216/390625, and supplies the [[optimal patent val]] for [[Würschmidt family|würschmidt temperament]]. It does not particularly shine in higher limits, but it does also supply the optimal patent val for the 7-limit 41&amp;123 temperament which also tempers out 1029/1024.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //164 equal division// divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the würschmidt comma, 393216/390625, and supplies the [[optimal patent val]] for [[Würschmidt family|würschmidt temperament]]. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&amp;123 temperament, and the 13-limit [[Gamelismic family#Portent|momentous temperament]], the rank-three temperament tempering out 196/195, 352/351, 385/384 and 441/440.


164 = 4 * 41, with divisors 2, 4, 41, 82</pre></div>
164 = 4 * 41, with divisors 2, 1/41 cotave4, 41, 82</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;164edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;164 equal division&lt;/em&gt; divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the würschmidt comma, 393216/390625, and supplies the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for &lt;a class="wiki_link" href="/W%C3%BCrschmidt%20family"&gt;würschmidt temperament&lt;/a&gt;. It does not particularly shine in higher limits, but it does also supply the optimal patent val for the 7-limit 41&amp;amp;123 temperament which also tempers out 1029/1024.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;164edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;164 equal division&lt;/em&gt; divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the würschmidt comma, 393216/390625, and supplies the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for &lt;a class="wiki_link" href="/W%C3%BCrschmidt%20family"&gt;würschmidt temperament&lt;/a&gt;. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&amp;amp;123 temperament, and the 13-limit &lt;a class="wiki_link" href="/Gamelismic%20family#Portent"&gt;momentous temperament&lt;/a&gt;, the rank-three temperament tempering out 196/195, 352/351, 385/384 and 441/440.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
164 = 4 * 41, with divisors 2, 4, 41, 82&lt;/body&gt;&lt;/html&gt;</pre></div>
164 = 4 * 41, with divisors 2, 1/41 cotave4, 41, 82&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 18:29, 8 September 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2012-09-08 18:29:09 UTC.
The original revision id was 363076988.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The //164 equal division// divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the würschmidt comma, 393216/390625, and supplies the [[optimal patent val]] for [[Würschmidt family|würschmidt temperament]]. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&123 temperament, and the 13-limit [[Gamelismic family#Portent|momentous temperament]], the rank-three temperament tempering out 196/195, 352/351, 385/384 and 441/440.

164 = 4 * 41, with divisors 2, 1/41 cotave4, 41, 82

Original HTML content:

<html><head><title>164edo</title></head><body>The <em>164 equal division</em> divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the würschmidt comma, 393216/390625, and supplies the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for <a class="wiki_link" href="/W%C3%BCrschmidt%20family">würschmidt temperament</a>. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&amp;123 temperament, and the 13-limit <a class="wiki_link" href="/Gamelismic%20family#Portent">momentous temperament</a>, the rank-three temperament tempering out 196/195, 352/351, 385/384 and 441/440.<br />
<br />
164 = 4 * 41, with divisors 2, 1/41 cotave4, 41, 82</body></html>