|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | The ''164 equal division'' divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the würschmidt comma, 393216/390625, and supplies the [[Optimal_patent_val|optimal patent val]] for [[Würschmidt_family|würschmidt temperament]]. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&123 temperament, and the 13-limit [[Gamelismic_family#Portent|momentous temperament]], the rank-three temperament tempering out 196/195, 352/351, 385/384 and 441/440. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-09-08 18:29:30 UTC</tt>.<br>
| |
| : The original revision id was <tt>363077016</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //164 equal division// divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the würschmidt comma, 393216/390625, and supplies the [[optimal patent val]] for [[Würschmidt family|würschmidt temperament]]. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&123 temperament, and the 13-limit [[Gamelismic family#Portent|momentous temperament]], the rank-three temperament tempering out 196/195, 352/351, 385/384 and 441/440.
| |
|
| |
|
| 164 = 4 * 41, with divisors 2, 4, 41, 82</pre></div> | | 164 = 4 * 41, with divisors 2, 4, 41, 82 |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>164edo</title></head><body>The <em>164 equal division</em> divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the würschmidt comma, 393216/390625, and supplies the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for <a class="wiki_link" href="/W%C3%BCrschmidt%20family">würschmidt temperament</a>. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&amp;123 temperament, and the 13-limit <a class="wiki_link" href="/Gamelismic%20family#Portent">momentous temperament</a>, the rank-three temperament tempering out 196/195, 352/351, 385/384 and 441/440.<br />
| |
| <br />
| |
| 164 = 4 * 41, with divisors 2, 4, 41, 82</body></html></pre></div>
| |
The 164 equal division divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the würschmidt comma, 393216/390625, and supplies the optimal patent val for würschmidt temperament. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&123 temperament, and the 13-limit momentous temperament, the rank-three temperament tempering out 196/195, 352/351, 385/384 and 441/440.
164 = 4 * 41, with divisors 2, 4, 41, 82