13edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>hstraub
**Imported revision 21205365 - Original comment: **
Wikispaces>Andrew_Heathwaite
**Imported revision 104020717 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2008-04-08 05:49:58 UTC</tt>.<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2009-11-19 14:06:49 UTC</tt>.<br>
: The original revision id was <tt>21205365</tt>.<br>
: The original revision id was <tt>104020717</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=13 tone equal temperament=  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=13 tone equal temperament / 13edo=  
 
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo). Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.
 
[[image:13edo_horograms.jpg]]
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson


**Compositions**
**Compositions**
Line 16: Line 21:
[[http://www.h-pi.com/midi/Prelude13ET.mid|Prelude in 13ET]] by Aaron Andrew Hunt</pre></div>
[[http://www.h-pi.com/midi/Prelude13ET.mid|Prelude in 13ET]] by Aaron Andrew Hunt</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;13edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x13 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;13 tone equal temperament&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;13edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x13 tone equal temperament / 13edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;13 tone equal temperament / 13edo&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp;amp; major sixth are xenharmonic (not similar to anything available in 12edo). Due to the prime character of the number 13, 13edo can form several xenharmonic &lt;a class="wiki_link" href="/MOSScales"&gt;moment of symmetry scales&lt;/a&gt;. The diagram below shows five &amp;quot;families&amp;quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp;amp; 6\13, respectively.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:2:&amp;lt;img src=&amp;quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:2 --&gt;&lt;br /&gt;
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;Compositions&lt;/strong&gt;&lt;br /&gt;
&lt;strong&gt;Compositions&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;

Revision as of 14:06, 19 November 2009

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Andrew_Heathwaite and made on 2009-11-19 14:06:49 UTC.
The original revision id was 104020717.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=13 tone equal temperament / 13edo= 

13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third & major sixth are xenharmonic (not similar to anything available in 12edo). Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, & 6\13, respectively.

[[image:13edo_horograms.jpg]]
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson

**Compositions**

[[http://www.microtonalmusic.net/audio/slowdance13edo.mp3|Slow Dance]] by [[http://danielthompson.blogspot.com/|Daniel Thompson]]
[[http://www.io.com/%7Ehmiller/midi/triskaidekaphobia.mid|Triskaidekaphobia]] by [[http://www.io.com/%7Ehmiller/music/|Herman Miller]]
[[http://home.snafu.de/djwolf/ChangeOfRegime.pdf|Change of Regime: Prelude, Invention & Air to a Ground in 13tet]] by [[Daniel Wolf]]
[[http://www.h-pi.com/midi/13ET.mid|Two-Part Invention in 13ET]] by Aaron Andrew Hunt
[[http://www.h-pi.com/midi/Prelude13ET.mid|Prelude in 13ET]] by Aaron Andrew Hunt

Original HTML content:

<html><head><title>13edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x13 tone equal temperament / 13edo"></a><!-- ws:end:WikiTextHeadingRule:0 -->13 tone equal temperament / 13edo</h1>
 <br />
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo). Due to the prime character of the number 13, 13edo can form several xenharmonic <a class="wiki_link" href="/MOSScales">moment of symmetry scales</a>. The diagram below shows five &quot;families&quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.<br />
<br />
<!-- ws:start:WikiTextLocalImageRule:2:&lt;img src=&quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /><!-- ws:end:WikiTextLocalImageRule:2 --><br />
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson<br />
<br />
<strong>Compositions</strong><br />
<br />
<a class="wiki_link_ext" href="http://www.microtonalmusic.net/audio/slowdance13edo.mp3" rel="nofollow">Slow Dance</a> by <a class="wiki_link_ext" href="http://danielthompson.blogspot.com/" rel="nofollow">Daniel Thompson</a><br />
<a class="wiki_link_ext" href="http://www.io.com/%7Ehmiller/midi/triskaidekaphobia.mid" rel="nofollow">Triskaidekaphobia</a> by <a class="wiki_link_ext" href="http://www.io.com/%7Ehmiller/music/" rel="nofollow">Herman Miller</a><br />
<a class="wiki_link_ext" href="http://home.snafu.de/djwolf/ChangeOfRegime.pdf" rel="nofollow">Change of Regime: Prelude, Invention &amp; Air to a Ground in 13tet</a> by <a class="wiki_link" href="/Daniel%20Wolf">Daniel Wolf</a><br />
<a class="wiki_link_ext" href="http://www.h-pi.com/midi/13ET.mid" rel="nofollow">Two-Part Invention in 13ET</a> by Aaron Andrew Hunt<br />
<a class="wiki_link_ext" href="http://www.h-pi.com/midi/Prelude13ET.mid" rel="nofollow">Prelude in 13ET</a> by Aaron Andrew Hunt</body></html>