13edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>xenwolf **Imported revision 239494451 - Original comment: ** |
Wikispaces>guest **Imported revision 241829697 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:guest|guest]] and made on <tt>2011-07-18 16:38:28 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>241829697</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 8: | Line 8: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=13 tone equal temperament / 13edo= | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=13 tone equal temperament / 13edo= | ||
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third & major sixth are xenharmonic (not similar to anything available in 12edo). Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, & 6\13, respectively. | 13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third & major sixth are xenharmonic (not similar to anything available in 12edo). | ||
|| Degree || Cents || Approximate Ratios* || | |||
|| 0 || 0 || 1/1 || | |||
|| 1 || 92.3077 || || | |||
|| 2 || 184.6154 || 10/9, 9/8, 11/10 || | |||
|| 3 || 276.9231 || 13/11 || | |||
|| 4 || 369.2308 || 5/4, 16/13, 11/9 || | |||
|| 5 || 461.5385 || 13/10 || | |||
|| 6 || 553.84 || 11/8, 18/13 || | |||
|| 7 || 646.15 || 16/11, 13/9 || | |||
|| 8 || 738.46 || 20/13 || | |||
|| 9 || 830.77 || 8/5, 13/8, 18/11 || | |||
|| 10 || 923.08 || 22/13 || | |||
|| 11 || 1015.38 || 9/5, 16/9, 20/11 || | |||
|| 12 || 1107.69 || || | |||
|| 13 || 1200 || 2/1 || | |||
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible. | |||
==Harmony in 13edo== | |||
One way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. Another way to view it is to totally disregard JI approximations entirely. | |||
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings), and the most successful approaches do not always make the most sense in terms of JI. | |||
==Scales in 13edo== | |||
Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, & 6\13, respectively. | |||
[[image:13edo_horograms.jpg]] | [[image:13edo_horograms.jpg]] | ||
Line 37: | Line 61: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>13edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x13 tone equal temperament / 13edo"></a><!-- ws:end:WikiTextHeadingRule:0 -->13 tone equal temperament / 13edo</h1> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>13edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x13 tone equal temperament / 13edo"></a><!-- ws:end:WikiTextHeadingRule:0 -->13 tone equal temperament / 13edo</h1> | ||
<br /> | <br /> | ||
13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo). Due to the prime character of the number 13, 13edo can form several xenharmonic <a class="wiki_link" href="/MOSScales">moment of symmetry scales</a>. The diagram below shows five &quot;families&quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.<br /> | 13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third &amp; major sixth are xenharmonic (not similar to anything available in 12edo). <br /> | ||
<table class="wiki_table"> | |||
<tr> | |||
<td>Degree<br /> | |||
</td> | |||
<td>Cents<br /> | |||
</td> | |||
<td>Approximate Ratios*<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>0<br /> | |||
</td> | |||
<td>0<br /> | |||
</td> | |||
<td>1/1<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>92.3077<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>2<br /> | |||
</td> | |||
<td>184.6154<br /> | |||
</td> | |||
<td>10/9, 9/8, 11/10<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>3<br /> | |||
</td> | |||
<td>276.9231<br /> | |||
</td> | |||
<td>13/11<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>4<br /> | |||
</td> | |||
<td>369.2308<br /> | |||
</td> | |||
<td>5/4, 16/13, 11/9<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>5<br /> | |||
</td> | |||
<td>461.5385<br /> | |||
</td> | |||
<td>13/10<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>6<br /> | |||
</td> | |||
<td>553.84<br /> | |||
</td> | |||
<td>11/8, 18/13<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>7<br /> | |||
</td> | |||
<td>646.15<br /> | |||
</td> | |||
<td>16/11, 13/9<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>8<br /> | |||
</td> | |||
<td>738.46<br /> | |||
</td> | |||
<td>20/13<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>9<br /> | |||
</td> | |||
<td>830.77<br /> | |||
</td> | |||
<td>8/5, 13/8, 18/11<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>10<br /> | |||
</td> | |||
<td>923.08<br /> | |||
</td> | |||
<td>22/13<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>11<br /> | |||
</td> | |||
<td>1015.38<br /> | |||
</td> | |||
<td>9/5, 16/9, 20/11<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>12<br /> | |||
</td> | |||
<td>1107.69<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>13<br /> | |||
</td> | |||
<td>1200<br /> | |||
</td> | |||
<td>2/1<br /> | |||
</td> | |||
</tr> | |||
</table> | |||
*based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.<br /> | |||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x13 tone equal temperament / 13edo-Harmony in 13edo"></a><!-- ws:end:WikiTextHeadingRule:2 -->Harmony in 13edo</h2> | |||
<br /> | |||
One way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. Another way to view it is to totally disregard JI approximations entirely.<br /> | |||
<br /> | |||
Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings), and the most successful approaches do not always make the most sense in terms of JI.<br /> | |||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="x13 tone equal temperament / 13edo-Scales in 13edo"></a><!-- ws:end:WikiTextHeadingRule:4 -->Scales in 13edo</h2> | |||
Due to the prime character of the number 13, 13edo can form several xenharmonic <a class="wiki_link" href="/MOSScales">moment of symmetry scales</a>. The diagram below shows five &quot;families&quot; of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, &amp; 6\13, respectively.<br /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:272:&lt;img src=&quot;/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /><!-- ws:end:WikiTextLocalImageRule:272 --><br /> | ||
<!-- ws:start:WikiTextFileRule: | <!-- ws:start:WikiTextFileRule:273:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&amp;w=320&quot; class=&quot;WikiFile&quot; id=&quot;wikitext@@file@@13edo horograms.pdf&quot; title=&quot;File: 13edo horograms.pdf&quot; width=&quot;320&quot; height=&quot;52&quot; /&gt; --><div class="objectEmbed"><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"><img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /></a><div><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf">13edo horograms.pdf</a><br /><ul><li><a href="/file/detail/13edo%20horograms.pdf">Details</a></li><li><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf">Download</a></li><li style="color: #666">242 KB</li></ul></div></div><!-- ws:end:WikiTextFileRule:273 --><br /> | ||
~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson<br /> | ~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson<br /> | ||
<br /> | <br /> | ||
Line 51: | Line 209: | ||
<a class="wiki_link_ext" href="http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&amp;songID=835265" rel="nofollow">Spikey Hair in 13tET</a> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a><br /> | <a class="wiki_link_ext" href="http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&amp;songID=835265" rel="nofollow">Spikey Hair in 13tET</a> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="x13 tone equal temperament / 13edo-Commas"></a><!-- ws:end:WikiTextHeadingRule:6 -->Commas</h2> | ||
13 EDO <a class="wiki_link" href="/tempering%20out">tempers out</a> the following <a class="wiki_link" href="/comma">comma</a>s. (Note: This assumes the val &lt; 13 21 30 36 45 48 |.)<br /> | 13 EDO <a class="wiki_link" href="/tempering%20out">tempers out</a> the following <a class="wiki_link" href="/comma">comma</a>s. (Note: This assumes the val &lt; 13 21 30 36 45 48 |.)<br /> | ||
Revision as of 16:38, 18 July 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author guest and made on 2011-07-18 16:38:28 UTC.
- The original revision id was 241829697.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=13 tone equal temperament / 13edo= 13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third & major sixth are xenharmonic (not similar to anything available in 12edo). || Degree || Cents || Approximate Ratios* || || 0 || 0 || 1/1 || || 1 || 92.3077 || || || 2 || 184.6154 || 10/9, 9/8, 11/10 || || 3 || 276.9231 || 13/11 || || 4 || 369.2308 || 5/4, 16/13, 11/9 || || 5 || 461.5385 || 13/10 || || 6 || 553.84 || 11/8, 18/13 || || 7 || 646.15 || 16/11, 13/9 || || 8 || 738.46 || 20/13 || || 9 || 830.77 || 8/5, 13/8, 18/11 || || 10 || 923.08 || 22/13 || || 11 || 1015.38 || 9/5, 16/9, 20/11 || || 12 || 1107.69 || || || 13 || 1200 || 2/1 || *based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible. ==Harmony in 13edo== One way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. Another way to view it is to totally disregard JI approximations entirely. Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings), and the most successful approaches do not always make the most sense in terms of JI. ==Scales in 13edo== Due to the prime character of the number 13, 13edo can form several xenharmonic [[MOSScales|moment of symmetry scales]]. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, & 6\13, respectively. [[image:13edo_horograms.jpg]] [[file:13edo horograms.pdf]] ~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson **Compositions** [[http://www.microtonalmusic.net/audio/slowdance13edo.mp3|Slow Dance]] by [[http://danielthompson.blogspot.com/|Daniel Thompson]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/Prelude%20in%2013ET.mp3|Prelude in 13ET]] by [[Aaron Andrew Hunt]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/13ET.mp3|Two-Part Invention in 13ET]] by [[Aaron Andrew Hunt]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/triskaidekaphobia.mp3|Triskaidekaphobia]] by [[http://www.io.com/%7Ehmiller/music/|Herman Miller]] [[http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&songID=835265|Spikey Hair in 13tET]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3|play]] by [[Andrew Heathwaite]] ==Commas== 13 EDO [[tempering out|tempers out]] the following [[comma]]s. (Note: This assumes the val < 13 21 30 36 45 48 |.) ||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||~ Name 3 || ||= 2109375/2097152 ||< | -21 3 7 > ||> 10.06 ||= Semicomma ||= Fokker Comma ||= || ||= 1029/1000 ||< | -3 1 -3 3 > ||> 49.49 ||= Keega ||= ||= || ||= 525/512 ||< | -9 1 2 1 > ||> 43.41 ||= Avicennma ||= Avicenna's Enharmonic Diesis ||= || ||= 64/63 ||< | 6 -2 0 -1 > ||> 27.26 ||= Septimal Comma ||= Archytas' Comma ||= Leipziger Komma || ||= 64827/64000 ||< | -9 3 -3 4 > ||> 22.23 ||= Squalentine ||= ||= || ||= 3125/3087 ||< | 0 -2 5 -3 > ||> 21.18 ||= Gariboh ||= ||= || ||= 3136/3125 ||< | 6 0 -5 2 > ||> 6.08 ||= Hemimean ||= ||= || ||= 121/120 ||< | -3 -1 -1 0 2 > ||> 14.37 ||= Biyatisma ||= ||= || ||= 441/440 ||< | -3 2 -1 2 -1 > ||> 3.93 ||= Werckisma ||= ||= ||
Original HTML content:
<html><head><title>13edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x13 tone equal temperament / 13edo"></a><!-- ws:end:WikiTextHeadingRule:0 -->13 tone equal temperament / 13edo</h1> <br /> 13edo refers to a tuning system which divides the octave (frequency ratio 2:1) into 13 equal parts. The steps are of similar size to those of 12edo (albeit squashed), while the intervals between a minor third & major sixth are xenharmonic (not similar to anything available in 12edo). <br /> <table class="wiki_table"> <tr> <td>Degree<br /> </td> <td>Cents<br /> </td> <td>Approximate Ratios*<br /> </td> </tr> <tr> <td>0<br /> </td> <td>0<br /> </td> <td>1/1<br /> </td> </tr> <tr> <td>1<br /> </td> <td>92.3077<br /> </td> <td><br /> </td> </tr> <tr> <td>2<br /> </td> <td>184.6154<br /> </td> <td>10/9, 9/8, 11/10<br /> </td> </tr> <tr> <td>3<br /> </td> <td>276.9231<br /> </td> <td>13/11<br /> </td> </tr> <tr> <td>4<br /> </td> <td>369.2308<br /> </td> <td>5/4, 16/13, 11/9<br /> </td> </tr> <tr> <td>5<br /> </td> <td>461.5385<br /> </td> <td>13/10<br /> </td> </tr> <tr> <td>6<br /> </td> <td>553.84<br /> </td> <td>11/8, 18/13<br /> </td> </tr> <tr> <td>7<br /> </td> <td>646.15<br /> </td> <td>16/11, 13/9<br /> </td> </tr> <tr> <td>8<br /> </td> <td>738.46<br /> </td> <td>20/13<br /> </td> </tr> <tr> <td>9<br /> </td> <td>830.77<br /> </td> <td>8/5, 13/8, 18/11<br /> </td> </tr> <tr> <td>10<br /> </td> <td>923.08<br /> </td> <td>22/13<br /> </td> </tr> <tr> <td>11<br /> </td> <td>1015.38<br /> </td> <td>9/5, 16/9, 20/11<br /> </td> </tr> <tr> <td>12<br /> </td> <td>1107.69<br /> </td> <td><br /> </td> </tr> <tr> <td>13<br /> </td> <td>1200<br /> </td> <td>2/1<br /> </td> </tr> </table> *based on treating 13-EDO as a 2.5.9.11.13 temperament; other approaches are possible.<br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x13 tone equal temperament / 13edo-Harmony in 13edo"></a><!-- ws:end:WikiTextHeadingRule:2 -->Harmony in 13edo</h2> <br /> One way to view 13-EDO is as a subgroup temperament of harmonics 2.5.9.11.13. Another way to view it is to totally disregard JI approximations entirely.<br /> <br /> Contrary to popular belief, consonant harmony is possible in 13-EDO, but it requires a radically different approach than that used in 12-EDO (or other Pythagorean or Meantone-based tunings), and the most successful approaches do not always make the most sense in terms of JI.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="x13 tone equal temperament / 13edo-Scales in 13edo"></a><!-- ws:end:WikiTextHeadingRule:4 -->Scales in 13edo</h2> Due to the prime character of the number 13, 13edo can form several xenharmonic <a class="wiki_link" href="/MOSScales">moment of symmetry scales</a>. The diagram below shows five "families" of MOS scales: those generated by making a chain of 2\13 (two degrees of 13edo), 3\13, 4\13, 5\13, & 6\13, respectively.<br /> <br /> <!-- ws:start:WikiTextLocalImageRule:272:<img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="" title="" /> --><img src="/file/view/13edo_horograms.jpg/104015789/13edo_horograms.jpg" alt="13edo_horograms.jpg" title="13edo_horograms.jpg" /><!-- ws:end:WikiTextLocalImageRule:272 --><br /> <!-- ws:start:WikiTextFileRule:273:<img src="http://www.wikispaces.com/site/embedthumbnail/file/13edo%20horograms.pdf?h=52&w=320" class="WikiFile" id="wikitext@@file@@13edo horograms.pdf" title="File: 13edo horograms.pdf" width="320" height="52" /> --><div class="objectEmbed"><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');"><img src="http://www.wikispaces.com/i/mime/32/application/pdf.png" height="32" width="32" alt="13edo horograms.pdf" /></a><div><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf" onclick="ws.common.trackFileLink('/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf');" class="filename" title="13edo horograms.pdf">13edo horograms.pdf</a><br /><ul><li><a href="/file/detail/13edo%20horograms.pdf">Details</a></li><li><a href="/file/view/13edo%20horograms.pdf/104047129/13edo%20horograms.pdf">Download</a></li><li style="color: #666">242 KB</li></ul></div></div><!-- ws:end:WikiTextFileRule:273 --><br /> ~diagram by Andrew Heathwaite, based on horograms pioneered by Erv Wilson<br /> <br /> <strong>Compositions</strong><br /> <br /> <a class="wiki_link_ext" href="http://www.microtonalmusic.net/audio/slowdance13edo.mp3" rel="nofollow">Slow Dance</a> by <a class="wiki_link_ext" href="http://danielthompson.blogspot.com/" rel="nofollow">Daniel Thompson</a><br /> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/Prelude%20in%2013ET.mp3" rel="nofollow">Prelude in 13ET</a> by <a class="wiki_link" href="/Aaron%20Andrew%20Hunt">Aaron Andrew Hunt</a><br /> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Hunt/13ET.mp3" rel="nofollow">Two-Part Invention in 13ET</a> by <a class="wiki_link" href="/Aaron%20Andrew%20Hunt">Aaron Andrew Hunt</a><br /> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Herman/triskaidekaphobia.mp3" rel="nofollow">Triskaidekaphobia</a> by <a class="wiki_link_ext" href="http://www.io.com/%7Ehmiller/music/" rel="nofollow">Herman Miller</a><br /> <a class="wiki_link_ext" href="http://www.soundclick.com/bands/page_songInfo.cfm?bandID=122613&songID=835265" rel="nofollow">Spikey Hair in 13tET</a> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Heathwaite/andrewheathwaite+improvisationin13tet.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a><br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><a name="x13 tone equal temperament / 13edo-Commas"></a><!-- ws:end:WikiTextHeadingRule:6 -->Commas</h2> 13 EDO <a class="wiki_link" href="/tempering%20out">tempers out</a> the following <a class="wiki_link" href="/comma">comma</a>s. (Note: This assumes the val < 13 21 30 36 45 48 |.)<br /> <table class="wiki_table"> <tr> <th>Comma<br /> </th> <th>Monzo<br /> </th> <th>Value (Cents)<br /> </th> <th>Name 1<br /> </th> <th>Name 2<br /> </th> <th>Name 3<br /> </th> </tr> <tr> <td style="text-align: center;">2109375/2097152<br /> </td> <td style="text-align: left;">| -21 3 7 ><br /> </td> <td style="text-align: right;">10.06<br /> </td> <td style="text-align: center;">Semicomma<br /> </td> <td style="text-align: center;">Fokker Comma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">1029/1000<br /> </td> <td style="text-align: left;">| -3 1 -3 3 ><br /> </td> <td style="text-align: right;">49.49<br /> </td> <td style="text-align: center;">Keega<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">525/512<br /> </td> <td style="text-align: left;">| -9 1 2 1 ><br /> </td> <td style="text-align: right;">43.41<br /> </td> <td style="text-align: center;">Avicennma<br /> </td> <td style="text-align: center;">Avicenna's Enharmonic Diesis<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">64/63<br /> </td> <td style="text-align: left;">| 6 -2 0 -1 ><br /> </td> <td style="text-align: right;">27.26<br /> </td> <td style="text-align: center;">Septimal Comma<br /> </td> <td style="text-align: center;">Archytas' Comma<br /> </td> <td style="text-align: center;">Leipziger Komma<br /> </td> </tr> <tr> <td style="text-align: center;">64827/64000<br /> </td> <td style="text-align: left;">| -9 3 -3 4 ><br /> </td> <td style="text-align: right;">22.23<br /> </td> <td style="text-align: center;">Squalentine<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">3125/3087<br /> </td> <td style="text-align: left;">| 0 -2 5 -3 ><br /> </td> <td style="text-align: right;">21.18<br /> </td> <td style="text-align: center;">Gariboh<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">3136/3125<br /> </td> <td style="text-align: left;">| 6 0 -5 2 ><br /> </td> <td style="text-align: right;">6.08<br /> </td> <td style="text-align: center;">Hemimean<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">121/120<br /> </td> <td style="text-align: left;">| -3 -1 -1 0 2 ><br /> </td> <td style="text-align: right;">14.37<br /> </td> <td style="text-align: center;">Biyatisma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">441/440<br /> </td> <td style="text-align: left;">| -3 2 -1 2 -1 ><br /> </td> <td style="text-align: right;">3.93<br /> </td> <td style="text-align: center;">Werckisma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> </table> </body></html>