29edo: Difference between revisions
m interwiki via template |
+Error table and temperament measures table |
||
Line 374: | Line 374: | ||
| this example in Sagittal notation shows 29-edo as a fifth-tone system. | | this example in Sagittal notation shows 29-edo as a fifth-tone system. | ||
|} | |} | ||
== Just approximation == | |||
=== Selected just intervals by error === | === Selected just intervals by error === | ||
{| class="wikitable center-all" | |||
! colspan="2" | | |||
! prime 2 | |||
! prime 3 | |||
! prime 5 | |||
! prime 7 | |||
! prime 11 | |||
! prime 13 | |||
|- | |||
! rowspan="2" |Error | |||
!absolute (¢) | |||
| 0.00 | |||
| +1.49 | |||
| -13.90 | |||
| -17.10 | |||
| -13.39 | |||
| -12.94 | |||
|- | |||
!relative (%) | |||
| 0.0 | |||
| +3.6 | |||
| -33.6 | |||
| -41.3 | |||
| -32.4 | |||
| -31.3 | |||
|} | |||
==== 15-odd-limit interval mappings ==== | |||
The following table shows how [[15-odd-limit intervals]] are represented in 29edo. Prime harmonics are in '''bold'''. | The following table shows how [[15-odd-limit intervals]] are represented in 29edo. Prime harmonics are in '''bold'''. | ||
Line 454: | Line 484: | ||
| [[9/7]], [[14/9]] | | [[9/7]], [[14/9]] | ||
| 20.088 | | 20.088 | ||
|} | |||
=== Temperament measures === | |||
The following table shows [[TE temperament measures]] (RMS normalized by the rank) of 29et. | |||
{| class="wikitable center-all" | |||
! colspan="2" | | |||
! 3-limit | |||
! 5-limit | |||
! 7-limit | |||
! 11-limit | |||
! 13-limit | |||
|- | |||
! colspan="2" |Octave stretch (¢) | |||
| -0.471 | |||
| +1.68 | |||
| +2.78 | |||
| +3.00 | |||
| +3.09 | |||
|- | |||
! rowspan="2" |Error | |||
! [[TE error|absolute]] (¢) | |||
| 0.471 | |||
| 3.07 | |||
| 3.28 | |||
| 2.97 | |||
| 2.71 | |||
|- | |||
! [[TE simple badness|relative]] (%) | |||
| 1.14 | |||
| 7.41 | |||
| 7.91 | |||
| 7.15 | |||
| 6.54 | |||
|} | |} | ||