114edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 403741050 - Original comment: **
Wikispaces>JosephRuhf
**Imported revision 588922354 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-02-03 00:54:09 UTC</tt>.<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-08-08 15:36:12 UTC</tt>.<br>
: The original revision id was <tt>403741050</tt>.<br>
: The original revision id was <tt>588922354</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**114edo** is the [[equal division of the octave]] into 114 parts, each of 10.52632 [[cent]]s. In the [[5-limit]] it [[tempering out|tempers out]] 2048/2025, in the [[7-limit]] 245/243, in the [[11-limit]] 121/120 and 176/175, in the [[13-limit]] 196/195 and 325/324, in the [[17-limit]] 136/135 and 154/153, in the [[19-limit]] 286/285 and 343/342. These commas make for 114edo being an excellent tuning for [[Diaschismic family|shrutar temperament]]; it is in fact the [[optimal patent val]] for [[shrutar]] in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament.</pre></div>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**114edo** is the [[equal division of the octave]] into 114 parts, each of 10.52632 [[cent]]s. In the [[5-limit]] it [[tempering out|tempers out]] 2048/2025, in the [[7-limit]] 245/243, in the [[11-limit]] 121/120 and 176/175, in the [[13-limit]] 196/195 and 325/324, in the [[17-limit]] 136/135 and 154/153, in the [[19-limit]] 286/285 and 343/342. These commas make for 114edo being an excellent tuning for [[Diaschismic family|shrutar temperament]]; it is in fact the [[optimal patent val]] for [[shrutar]] in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament.
 
===Period of 19-limit Shrutar===
||~ Degree ||~ Cents ||
|| 2 || 21.05263 ||
|| 3 || 31.57895 ||
|| 5 || 52.63158 ||
|| 7 || 73.68421 ||
|| 8 || 84.21053 ||
|| 10 || 105.26316 ||
|| 12 || 126.31579 ||
|| 13 || 136.842105 ||
|| 15 || 157.89474 ||
|| 17 || 178.94737 ||
|| 18 || 189.47369 ||
|| 20 || 210.52632 ||
|| 22 || 231.57895 ||
|| 23 || 242.10526 ||
|| 25 || 263.157895 ||
|| 27 || 284.21053 ||
|| 29 || 305.26316 ||
|| 30 || 315.78947 ||
|| 32 || 336.842105 ||
|| 34 || 357.89474 ||
|| 35 || 368.42105 ||
|| 37 || 389.47368 ||
|| 39 || 410.52632 ||
|| 40 || 421.05263 ||
|| 42 || 442.10526 ||
|| 44 || 463.157895 ||
|| 45 || 473.68421 ||
|| 47 || 494.73684 ||
|| 49 || 515.78947 ||
|| 50 || 526.31579 ||
|| 52 || 547.36842 ||
|| 54 || 568.42105 ||
|| 55 || 578.94737 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;114edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;114edo&lt;/strong&gt; is the &lt;a class="wiki_link" href="/equal%20division%20of%20the%20octave"&gt;equal division of the octave&lt;/a&gt; into 114 parts, each of 10.52632 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s. In the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; it &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; 2048/2025, in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; 245/243, in the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; 121/120 and 176/175, in the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt; 196/195 and 325/324, in the &lt;a class="wiki_link" href="/17-limit"&gt;17-limit&lt;/a&gt; 136/135 and 154/153, in the &lt;a class="wiki_link" href="/19-limit"&gt;19-limit&lt;/a&gt; 286/285 and 343/342. These commas make for 114edo being an excellent tuning for &lt;a class="wiki_link" href="/Diaschismic%20family"&gt;shrutar temperament&lt;/a&gt;; it is in fact the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for &lt;a class="wiki_link" href="/shrutar"&gt;shrutar&lt;/a&gt; in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament.&lt;/body&gt;&lt;/html&gt;</pre></div>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;114edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;114edo&lt;/strong&gt; is the &lt;a class="wiki_link" href="/equal%20division%20of%20the%20octave"&gt;equal division of the octave&lt;/a&gt; into 114 parts, each of 10.52632 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s. In the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; it &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; 2048/2025, in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; 245/243, in the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; 121/120 and 176/175, in the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt; 196/195 and 325/324, in the &lt;a class="wiki_link" href="/17-limit"&gt;17-limit&lt;/a&gt; 136/135 and 154/153, in the &lt;a class="wiki_link" href="/19-limit"&gt;19-limit&lt;/a&gt; 286/285 and 343/342. These commas make for 114edo being an excellent tuning for &lt;a class="wiki_link" href="/Diaschismic%20family"&gt;shrutar temperament&lt;/a&gt;; it is in fact the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for &lt;a class="wiki_link" href="/shrutar"&gt;shrutar&lt;/a&gt; in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc0"&gt;&lt;a name="x--Period of 19-limit Shrutar"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Period of 19-limit Shrutar&lt;/h3&gt;
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th&gt;Degree&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;Cents&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21.05263&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;31.57895&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;52.63158&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;73.68421&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;84.21053&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;105.26316&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;126.31579&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;136.842105&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;157.89474&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;178.94737&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;189.47369&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;210.52632&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;231.57895&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;242.10526&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;263.157895&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;284.21053&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;305.26316&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;315.78947&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;336.842105&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;357.89474&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;368.42105&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;389.47368&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;410.52632&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;421.05263&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;442.10526&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;463.157895&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;473.68421&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;494.73684&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;515.78947&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;526.31579&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;547.36842&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;568.42105&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;578.94737&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 15:36, 8 August 2016

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author JosephRuhf and made on 2016-08-08 15:36:12 UTC.
The original revision id was 588922354.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

**114edo** is the [[equal division of the octave]] into 114 parts, each of 10.52632 [[cent]]s. In the [[5-limit]] it [[tempering out|tempers out]] 2048/2025, in the [[7-limit]] 245/243, in the [[11-limit]] 121/120 and 176/175, in the [[13-limit]] 196/195 and 325/324, in the [[17-limit]] 136/135 and 154/153, in the [[19-limit]] 286/285 and 343/342. These commas make for 114edo being an excellent tuning for [[Diaschismic family|shrutar temperament]]; it is in fact the [[optimal patent val]] for [[shrutar]] in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament.

===Period of 19-limit Shrutar=== 
||~ Degree ||~ Cents ||
|| 2 || 21.05263 ||
|| 3 || 31.57895 ||
|| 5 || 52.63158 ||
|| 7 || 73.68421 ||
|| 8 || 84.21053 ||
|| 10 || 105.26316 ||
|| 12 || 126.31579 ||
|| 13 || 136.842105 ||
|| 15 || 157.89474 ||
|| 17 || 178.94737 ||
|| 18 || 189.47369 ||
|| 20 || 210.52632 ||
|| 22 || 231.57895 ||
|| 23 || 242.10526 ||
|| 25 || 263.157895 ||
|| 27 || 284.21053 ||
|| 29 || 305.26316 ||
|| 30 || 315.78947 ||
|| 32 || 336.842105 ||
|| 34 || 357.89474 ||
|| 35 || 368.42105 ||
|| 37 || 389.47368 ||
|| 39 || 410.52632 ||
|| 40 || 421.05263 ||
|| 42 || 442.10526 ||
|| 44 || 463.157895 ||
|| 45 || 473.68421 ||
|| 47 || 494.73684 ||
|| 49 || 515.78947 ||
|| 50 || 526.31579 ||
|| 52 || 547.36842 ||
|| 54 || 568.42105 ||
|| 55 || 578.94737 ||

Original HTML content:

<html><head><title>114edo</title></head><body><strong>114edo</strong> is the <a class="wiki_link" href="/equal%20division%20of%20the%20octave">equal division of the octave</a> into 114 parts, each of 10.52632 <a class="wiki_link" href="/cent">cent</a>s. In the <a class="wiki_link" href="/5-limit">5-limit</a> it <a class="wiki_link" href="/tempering%20out">tempers out</a> 2048/2025, in the <a class="wiki_link" href="/7-limit">7-limit</a> 245/243, in the <a class="wiki_link" href="/11-limit">11-limit</a> 121/120 and 176/175, in the <a class="wiki_link" href="/13-limit">13-limit</a> 196/195 and 325/324, in the <a class="wiki_link" href="/17-limit">17-limit</a> 136/135 and 154/153, in the <a class="wiki_link" href="/19-limit">19-limit</a> 286/285 and 343/342. These commas make for 114edo being an excellent tuning for <a class="wiki_link" href="/Diaschismic%20family">shrutar temperament</a>; it is in fact the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for <a class="wiki_link" href="/shrutar">shrutar</a> in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h3&gt; --><h3 id="toc0"><a name="x--Period of 19-limit Shrutar"></a><!-- ws:end:WikiTextHeadingRule:0 -->Period of 19-limit Shrutar</h3>
 

<table class="wiki_table">
    <tr>
        <th>Degree<br />
</th>
        <th>Cents<br />
</th>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>21.05263<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>31.57895<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>52.63158<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>73.68421<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>84.21053<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>105.26316<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>126.31579<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>136.842105<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>157.89474<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>178.94737<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>189.47369<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>210.52632<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>231.57895<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>242.10526<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>263.157895<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>284.21053<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>305.26316<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>315.78947<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>336.842105<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>357.89474<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>368.42105<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>389.47368<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>410.52632<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>421.05263<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>442.10526<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>463.157895<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>473.68421<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>494.73684<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>515.78947<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>526.31579<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>547.36842<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>568.42105<br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>578.94737<br />
</td>
    </tr>
</table>

</body></html>