114edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>genewardsmith **Imported revision 403741050 - Original comment: ** |
Wikispaces>JosephRuhf **Imported revision 588922354 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-08-08 15:36:12 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>588922354</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**114edo** is the [[equal division of the octave]] into 114 parts, each of 10.52632 [[cent]]s. In the [[5-limit]] it [[tempering out|tempers out]] 2048/2025, in the [[7-limit]] 245/243, in the [[11-limit]] 121/120 and 176/175, in the [[13-limit]] 196/195 and 325/324, in the [[17-limit]] 136/135 and 154/153, in the [[19-limit]] 286/285 and 343/342. These commas make for 114edo being an excellent tuning for [[Diaschismic family|shrutar temperament]]; it is in fact the [[optimal patent val]] for [[shrutar]] in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament.</pre></div> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**114edo** is the [[equal division of the octave]] into 114 parts, each of 10.52632 [[cent]]s. In the [[5-limit]] it [[tempering out|tempers out]] 2048/2025, in the [[7-limit]] 245/243, in the [[11-limit]] 121/120 and 176/175, in the [[13-limit]] 196/195 and 325/324, in the [[17-limit]] 136/135 and 154/153, in the [[19-limit]] 286/285 and 343/342. These commas make for 114edo being an excellent tuning for [[Diaschismic family|shrutar temperament]]; it is in fact the [[optimal patent val]] for [[shrutar]] in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament. | ||
===Period of 19-limit Shrutar=== | |||
||~ Degree ||~ Cents || | |||
|| 2 || 21.05263 || | |||
|| 3 || 31.57895 || | |||
|| 5 || 52.63158 || | |||
|| 7 || 73.68421 || | |||
|| 8 || 84.21053 || | |||
|| 10 || 105.26316 || | |||
|| 12 || 126.31579 || | |||
|| 13 || 136.842105 || | |||
|| 15 || 157.89474 || | |||
|| 17 || 178.94737 || | |||
|| 18 || 189.47369 || | |||
|| 20 || 210.52632 || | |||
|| 22 || 231.57895 || | |||
|| 23 || 242.10526 || | |||
|| 25 || 263.157895 || | |||
|| 27 || 284.21053 || | |||
|| 29 || 305.26316 || | |||
|| 30 || 315.78947 || | |||
|| 32 || 336.842105 || | |||
|| 34 || 357.89474 || | |||
|| 35 || 368.42105 || | |||
|| 37 || 389.47368 || | |||
|| 39 || 410.52632 || | |||
|| 40 || 421.05263 || | |||
|| 42 || 442.10526 || | |||
|| 44 || 463.157895 || | |||
|| 45 || 473.68421 || | |||
|| 47 || 494.73684 || | |||
|| 49 || 515.78947 || | |||
|| 50 || 526.31579 || | |||
|| 52 || 547.36842 || | |||
|| 54 || 568.42105 || | |||
|| 55 || 578.94737 ||</pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>114edo</title></head><body><strong>114edo</strong> is the <a class="wiki_link" href="/equal%20division%20of%20the%20octave">equal division of the octave</a> into 114 parts, each of 10.52632 <a class="wiki_link" href="/cent">cent</a>s. In the <a class="wiki_link" href="/5-limit">5-limit</a> it <a class="wiki_link" href="/tempering%20out">tempers out</a> 2048/2025, in the <a class="wiki_link" href="/7-limit">7-limit</a> 245/243, in the <a class="wiki_link" href="/11-limit">11-limit</a> 121/120 and 176/175, in the <a class="wiki_link" href="/13-limit">13-limit</a> 196/195 and 325/324, in the <a class="wiki_link" href="/17-limit">17-limit</a> 136/135 and 154/153, in the <a class="wiki_link" href="/19-limit">19-limit</a> 286/285 and 343/342. These commas make for 114edo being an excellent tuning for <a class="wiki_link" href="/Diaschismic%20family">shrutar temperament</a>; it is in fact the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for <a class="wiki_link" href="/shrutar">shrutar</a> in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament.</body></html></pre></div> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>114edo</title></head><body><strong>114edo</strong> is the <a class="wiki_link" href="/equal%20division%20of%20the%20octave">equal division of the octave</a> into 114 parts, each of 10.52632 <a class="wiki_link" href="/cent">cent</a>s. In the <a class="wiki_link" href="/5-limit">5-limit</a> it <a class="wiki_link" href="/tempering%20out">tempers out</a> 2048/2025, in the <a class="wiki_link" href="/7-limit">7-limit</a> 245/243, in the <a class="wiki_link" href="/11-limit">11-limit</a> 121/120 and 176/175, in the <a class="wiki_link" href="/13-limit">13-limit</a> 196/195 and 325/324, in the <a class="wiki_link" href="/17-limit">17-limit</a> 136/135 and 154/153, in the <a class="wiki_link" href="/19-limit">19-limit</a> 286/285 and 343/342. These commas make for 114edo being an excellent tuning for <a class="wiki_link" href="/Diaschismic%20family">shrutar temperament</a>; it is in fact the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for <a class="wiki_link" href="/shrutar">shrutar</a> in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament.<br /> | ||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h3&gt; --><h3 id="toc0"><a name="x--Period of 19-limit Shrutar"></a><!-- ws:end:WikiTextHeadingRule:0 -->Period of 19-limit Shrutar</h3> | |||
<table class="wiki_table"> | |||
<tr> | |||
<th>Degree<br /> | |||
</th> | |||
<th>Cents<br /> | |||
</th> | |||
</tr> | |||
<tr> | |||
<td>2<br /> | |||
</td> | |||
<td>21.05263<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>3<br /> | |||
</td> | |||
<td>31.57895<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>5<br /> | |||
</td> | |||
<td>52.63158<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>7<br /> | |||
</td> | |||
<td>73.68421<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>8<br /> | |||
</td> | |||
<td>84.21053<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>10<br /> | |||
</td> | |||
<td>105.26316<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>12<br /> | |||
</td> | |||
<td>126.31579<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>13<br /> | |||
</td> | |||
<td>136.842105<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>15<br /> | |||
</td> | |||
<td>157.89474<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>17<br /> | |||
</td> | |||
<td>178.94737<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>18<br /> | |||
</td> | |||
<td>189.47369<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>20<br /> | |||
</td> | |||
<td>210.52632<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>22<br /> | |||
</td> | |||
<td>231.57895<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>23<br /> | |||
</td> | |||
<td>242.10526<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>25<br /> | |||
</td> | |||
<td>263.157895<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>27<br /> | |||
</td> | |||
<td>284.21053<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>29<br /> | |||
</td> | |||
<td>305.26316<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>30<br /> | |||
</td> | |||
<td>315.78947<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>32<br /> | |||
</td> | |||
<td>336.842105<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>34<br /> | |||
</td> | |||
<td>357.89474<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>35<br /> | |||
</td> | |||
<td>368.42105<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>37<br /> | |||
</td> | |||
<td>389.47368<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>39<br /> | |||
</td> | |||
<td>410.52632<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>40<br /> | |||
</td> | |||
<td>421.05263<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>42<br /> | |||
</td> | |||
<td>442.10526<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>44<br /> | |||
</td> | |||
<td>463.157895<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>45<br /> | |||
</td> | |||
<td>473.68421<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>47<br /> | |||
</td> | |||
<td>494.73684<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>49<br /> | |||
</td> | |||
<td>515.78947<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>50<br /> | |||
</td> | |||
<td>526.31579<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>52<br /> | |||
</td> | |||
<td>547.36842<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>54<br /> | |||
</td> | |||
<td>568.42105<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>55<br /> | |||
</td> | |||
<td>578.94737<br /> | |||
</td> | |||
</tr> | |||
</table> | |||
</body></html></pre></div> |
Revision as of 15:36, 8 August 2016
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author JosephRuhf and made on 2016-08-08 15:36:12 UTC.
- The original revision id was 588922354.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
**114edo** is the [[equal division of the octave]] into 114 parts, each of 10.52632 [[cent]]s. In the [[5-limit]] it [[tempering out|tempers out]] 2048/2025, in the [[7-limit]] 245/243, in the [[11-limit]] 121/120 and 176/175, in the [[13-limit]] 196/195 and 325/324, in the [[17-limit]] 136/135 and 154/153, in the [[19-limit]] 286/285 and 343/342. These commas make for 114edo being an excellent tuning for [[Diaschismic family|shrutar temperament]]; it is in fact the [[optimal patent val]] for [[shrutar]] in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament. ===Period of 19-limit Shrutar=== ||~ Degree ||~ Cents || || 2 || 21.05263 || || 3 || 31.57895 || || 5 || 52.63158 || || 7 || 73.68421 || || 8 || 84.21053 || || 10 || 105.26316 || || 12 || 126.31579 || || 13 || 136.842105 || || 15 || 157.89474 || || 17 || 178.94737 || || 18 || 189.47369 || || 20 || 210.52632 || || 22 || 231.57895 || || 23 || 242.10526 || || 25 || 263.157895 || || 27 || 284.21053 || || 29 || 305.26316 || || 30 || 315.78947 || || 32 || 336.842105 || || 34 || 357.89474 || || 35 || 368.42105 || || 37 || 389.47368 || || 39 || 410.52632 || || 40 || 421.05263 || || 42 || 442.10526 || || 44 || 463.157895 || || 45 || 473.68421 || || 47 || 494.73684 || || 49 || 515.78947 || || 50 || 526.31579 || || 52 || 547.36842 || || 54 || 568.42105 || || 55 || 578.94737 ||
Original HTML content:
<html><head><title>114edo</title></head><body><strong>114edo</strong> is the <a class="wiki_link" href="/equal%20division%20of%20the%20octave">equal division of the octave</a> into 114 parts, each of 10.52632 <a class="wiki_link" href="/cent">cent</a>s. In the <a class="wiki_link" href="/5-limit">5-limit</a> it <a class="wiki_link" href="/tempering%20out">tempers out</a> 2048/2025, in the <a class="wiki_link" href="/7-limit">7-limit</a> 245/243, in the <a class="wiki_link" href="/11-limit">11-limit</a> 121/120 and 176/175, in the <a class="wiki_link" href="/13-limit">13-limit</a> 196/195 and 325/324, in the <a class="wiki_link" href="/17-limit">17-limit</a> 136/135 and 154/153, in the <a class="wiki_link" href="/19-limit">19-limit</a> 286/285 and 343/342. These commas make for 114edo being an excellent tuning for <a class="wiki_link" href="/Diaschismic%20family">shrutar temperament</a>; it is in fact the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for <a class="wiki_link" href="/shrutar">shrutar</a> in the 11- 13- 17- and 19-limit, as well as the rank three bisector temperament.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h3> --><h3 id="toc0"><a name="x--Period of 19-limit Shrutar"></a><!-- ws:end:WikiTextHeadingRule:0 -->Period of 19-limit Shrutar</h3> <table class="wiki_table"> <tr> <th>Degree<br /> </th> <th>Cents<br /> </th> </tr> <tr> <td>2<br /> </td> <td>21.05263<br /> </td> </tr> <tr> <td>3<br /> </td> <td>31.57895<br /> </td> </tr> <tr> <td>5<br /> </td> <td>52.63158<br /> </td> </tr> <tr> <td>7<br /> </td> <td>73.68421<br /> </td> </tr> <tr> <td>8<br /> </td> <td>84.21053<br /> </td> </tr> <tr> <td>10<br /> </td> <td>105.26316<br /> </td> </tr> <tr> <td>12<br /> </td> <td>126.31579<br /> </td> </tr> <tr> <td>13<br /> </td> <td>136.842105<br /> </td> </tr> <tr> <td>15<br /> </td> <td>157.89474<br /> </td> </tr> <tr> <td>17<br /> </td> <td>178.94737<br /> </td> </tr> <tr> <td>18<br /> </td> <td>189.47369<br /> </td> </tr> <tr> <td>20<br /> </td> <td>210.52632<br /> </td> </tr> <tr> <td>22<br /> </td> <td>231.57895<br /> </td> </tr> <tr> <td>23<br /> </td> <td>242.10526<br /> </td> </tr> <tr> <td>25<br /> </td> <td>263.157895<br /> </td> </tr> <tr> <td>27<br /> </td> <td>284.21053<br /> </td> </tr> <tr> <td>29<br /> </td> <td>305.26316<br /> </td> </tr> <tr> <td>30<br /> </td> <td>315.78947<br /> </td> </tr> <tr> <td>32<br /> </td> <td>336.842105<br /> </td> </tr> <tr> <td>34<br /> </td> <td>357.89474<br /> </td> </tr> <tr> <td>35<br /> </td> <td>368.42105<br /> </td> </tr> <tr> <td>37<br /> </td> <td>389.47368<br /> </td> </tr> <tr> <td>39<br /> </td> <td>410.52632<br /> </td> </tr> <tr> <td>40<br /> </td> <td>421.05263<br /> </td> </tr> <tr> <td>42<br /> </td> <td>442.10526<br /> </td> </tr> <tr> <td>44<br /> </td> <td>463.157895<br /> </td> </tr> <tr> <td>45<br /> </td> <td>473.68421<br /> </td> </tr> <tr> <td>47<br /> </td> <td>494.73684<br /> </td> </tr> <tr> <td>49<br /> </td> <td>515.78947<br /> </td> </tr> <tr> <td>50<br /> </td> <td>526.31579<br /> </td> </tr> <tr> <td>52<br /> </td> <td>547.36842<br /> </td> </tr> <tr> <td>54<br /> </td> <td>568.42105<br /> </td> </tr> <tr> <td>55<br /> </td> <td>578.94737<br /> </td> </tr> </table> </body></html>