The Archipelago: Difference between revisions
Tags: Mobile edit Mobile web edit |
m +link to comma |
||
Line 1: | Line 1: | ||
__FORCETOC__ | __FORCETOC__ | ||
The archipelago is a rag-tag collection of various regular temperaments of different ranks, including subgroup temperaments, associated with island temperament: the rank five thirteen limit temperament tempering out the island comma, 676/675. Common to all of them is the observation that two intervals of 15/13 are equated with a fourth. Hence a 1-15/13-4/3 chord is a characteristic island chord, and 15/13 tends to be of low complexity. Also characteristic is the barbados triad, the 1-13/10-3/2 triad, as well as its inversion 1-15/13-3/2, the barbados tetrad, 1-13/10-3/2-26/15, plus the tetrads 1-13/10-3/2-8/5 and 1-13/10-3/2-9/5. The [[Just_intonation_subgroups|just intonation subgroup]] generated by 2, 4/3 and 15/13 is 2.3.13/5, and the barbados triad and tetrad are found in that, while the other two tetrads are found in the larger 2.3.5.13 subgroup. | The archipelago is a rag-tag collection of various regular temperaments of different ranks, including subgroup temperaments, associated with island temperament: the rank five thirteen limit temperament tempering out the island comma, [[676/675]]. Common to all of them is the observation that two intervals of 15/13 are equated with a fourth. Hence a 1-15/13-4/3 chord is a characteristic island chord, and 15/13 tends to be of low complexity. Also characteristic is the barbados triad, the 1-13/10-3/2 triad, as well as its inversion 1-15/13-3/2, the barbados tetrad, 1-13/10-3/2-26/15, plus the tetrads 1-13/10-3/2-8/5 and 1-13/10-3/2-9/5. The [[Just_intonation_subgroups|just intonation subgroup]] generated by 2, 4/3 and 15/13 is 2.3.13/5, and the barbados triad and tetrad are found in that, while the other two tetrads are found in the larger 2.3.5.13 subgroup. | ||
The barbados triad is of particular theoretical interest because, when reduced to lowest terms, it is the 10:13:15 triad. Thus, this triad is only slightly higher in complexity than the 5-limit 10:12:15 minor triad, which means it may be of distinct value as a relatively unexplored musical consonance. It is one of only a few low-complexity triads with a 3/2 on the outer dyad, some others being 4:5:6, 6:7:9, and 10:12:15. It works out to 0-454-702 cents, which means that it is an ''ultramajor'' triad, with a third sharper even than the 9/7 supermajor third. | The barbados triad is of particular theoretical interest because, when reduced to lowest terms, it is the 10:13:15 triad. Thus, this triad is only slightly higher in complexity than the 5-limit 10:12:15 minor triad, which means it may be of distinct value as a relatively unexplored musical consonance. It is one of only a few low-complexity triads with a 3/2 on the outer dyad, some others being 4:5:6, 6:7:9, and 10:12:15. It works out to 0-454-702 cents, which means that it is an ''ultramajor'' triad, with a third sharper even than the 9/7 supermajor third. |