34ed7: Difference between revisions
Created page with "'''Division of the 7th harmonic into 34 equal parts''' (34ed7) is related to 12 edo, but with the 7/1 rather than the 2/1 being just. The octave is about 11...." Tags: Mobile edit Mobile web edit |
No edit summary Tags: Mobile edit Mobile web edit |
||
Line 30: | Line 30: | ||
| | 4 | | | 4 | ||
| | 396.3325 | | | 396.3325 | ||
| | 49/39 | | | 49/39, 34/27 | ||
| | pseudo-[[5/4]] | | | pseudo-[[5/4]] | ||
|- | |- | ||
| | 5 | | | 5 | ||
| | 495.4156 | | | 495.4156 | ||
| | [[4/3]] | |||
| | | | | | ||
|- | |- | ||
| | 6 | | | 6 | ||
| | 594.4987 | | | 594.4987 | ||
| | | | | [[24/17]] | ||
| | | | | | ||
|- | |- | ||
Line 50: | Line 50: | ||
| | 8 | | | 8 | ||
| | 792.6649 | | | 792.6649 | ||
| | 30/19, [[128/81]] | | | [[30/19]], [[128/81]] | ||
| | | | | | ||
|- | |- | ||
| | 9 | | | 9 | ||
| | 891.7480 | | | 891.7480 | ||
| | | | | 77/46 | ||
| | pseudo-[[5/3]] | | | pseudo-[[5/3]] | ||
|- | |- | ||
Line 75: | Line 75: | ||
| | 13 | | | 13 | ||
| | 1288.0805 | | | 1288.0805 | ||
| | [[20/19|40/19]] | | | [[21/20|21/10]], [[20/19|40/19]] | ||
| | | | | | ||
|- | |- | ||
Line 115: | Line 115: | ||
| | 21 | | | 21 | ||
| | 2080.7454 | | | 2080.7454 | ||
| | 133/40, [[10/3]] | |||
| | | | | | ||
|- | |- | ||
| | 22 | | | 22 | ||
Line 150: | Line 150: | ||
| | 28 | | | 28 | ||
| | 2774.3272 | | | 2774.3272 | ||
| | | | | 119/24 | ||
| | pseudo-[[5/1]] | | | pseudo-[[5/1]] | ||
|- | |- | ||
| | 29 | | | 29 | ||
| | 2873.4103 | | | 2873.4103 | ||
| | | | | [[21/16|21/4]] | ||
| | pseudo-[[16/3]] | | | pseudo-[[16/3]] | ||
|- | |- | ||
| | 30 | | | 30 | ||
| | 2972.4934 | | | 2972.4934 | ||
| | | | | 39/7 | ||
| | | | | | ||
|- | |- | ||
Line 183: | Line 183: | ||
| | [[7/4|harmonic seventh]] plus two octaves | | | [[7/4|harmonic seventh]] plus two octaves | ||
|} | |} | ||
34ed7 can also be thought of as a [[generator]] of the 11-limit temperament which tempers out 896/891, 1375/1372, and 4375/4356, which is a [[cluster temperament]] with 12 clusters of notes in an octave. This temperament is supported by [[12edo]], [[109edo]], and [[121edo]] among others. | |||
[[Category:Ed7]] | [[Category:Ed7]] | ||
[[Category:Edonoi]] | [[Category:Edonoi]] |