The Riemann zeta function and tuning: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>genewardsmith **Imported revision 216383068 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 216383156 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-04-01 | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-04-01 23:00:06 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>216383156</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 11: | Line 11: | ||
Consider to start out with [[Tenney-Eucliedan metrics|Tenney-Euclidean error]]. For some [[equal]] division N in the [[p-limit]], this can be defined as the square root of the quantity | Consider to start out with [[Tenney-Eucliedan metrics|Tenney-Euclidean error]]. For some [[equal]] division N in the [[p-limit]], this can be defined as the square root of the quantity | ||
[[math]] | [[math]] | ||
\sum_{q prime | \sum_{q prime \le p} (\frac{E(q){\ln q})^2 | ||
[[math]] | [[math]] | ||
where E(q) is the error [[math]] \frac{b}{N} - \lb | where E(q) is the error | ||
[[math]] \frac{b}{N} - \lb q [[math]] | |||
of the [[patent val]] tuning, meaning the nearest to q, of the prime q.</pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>The Riemann Zeta Function and Tuning</title></head><body><!-- ws:start:WikiTextTocRule:3:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:3 --><!-- ws:start:WikiTextTocRule:4: --><a href="#Preliminaries">Preliminaries</a><!-- ws:end:WikiTextTocRule:4 --><!-- ws:start:WikiTextTocRule:5: --> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>The Riemann Zeta Function and Tuning</title></head><body><!-- ws:start:WikiTextTocRule:3:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:3 --><!-- ws:start:WikiTextTocRule:4: --><a href="#Preliminaries">Preliminaries</a><!-- ws:end:WikiTextTocRule:4 --><!-- ws:start:WikiTextTocRule:5: --> | ||
Line 21: | Line 23: | ||
<!-- ws:start:WikiTextMathRule:0: | <!-- ws:start:WikiTextMathRule:0: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\sum_{q prime | \sum_{q prime \le p} (\frac{E(q){\ln q})^2&lt;br/&gt;[[math]] | ||
--><script type="math/tex">\sum_{q prime | --><script type="math/tex">\sum_{q prime \le p} (\frac{E(q){\ln q})^2</script><!-- ws:end:WikiTextMathRule:0 --><br /> | ||
where E(q) is the error <a class="wiki_link" href="/math">math</a> \frac{b}{N} - \lb | where E(q) is the error <br /> | ||
<a class="wiki_link" href="/math">math</a> \frac{b}{N} - \lb q <a class="wiki_link" href="/math">math</a> <br /> | |||
of the <a class="wiki_link" href="/patent%20val">patent val</a> tuning, meaning the nearest to q, of the prime q.</body></html></pre></div> |
Revision as of 23:00, 1 April 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2011-04-01 23:00:06 UTC.
- The original revision id was 216383156.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
[[toc|flat]] =Preliminaries= Consider to start out with [[Tenney-Eucliedan metrics|Tenney-Euclidean error]]. For some [[equal]] division N in the [[p-limit]], this can be defined as the square root of the quantity [[math]] \sum_{q prime \le p} (\frac{E(q){\ln q})^2 [[math]] where E(q) is the error [[math]] \frac{b}{N} - \lb q [[math]] of the [[patent val]] tuning, meaning the nearest to q, of the prime q.
Original HTML content:
<html><head><title>The Riemann Zeta Function and Tuning</title></head><body><!-- ws:start:WikiTextTocRule:3:<img id="wikitext@@toc@@flat" class="WikiMedia WikiMediaTocFlat" title="Table of Contents" src="/site/embedthumbnail/toc/flat?w=100&h=16"/> --><!-- ws:end:WikiTextTocRule:3 --><!-- ws:start:WikiTextTocRule:4: --><a href="#Preliminaries">Preliminaries</a><!-- ws:end:WikiTextTocRule:4 --><!-- ws:start:WikiTextTocRule:5: --> <!-- ws:end:WikiTextTocRule:5 --><br /> <!-- ws:start:WikiTextHeadingRule:1:<h1> --><h1 id="toc0"><a name="Preliminaries"></a><!-- ws:end:WikiTextHeadingRule:1 -->Preliminaries</h1> Consider to start out with <a class="wiki_link" href="/Tenney-Eucliedan%20metrics">Tenney-Euclidean error</a>. For some <a class="wiki_link" href="/equal">equal</a> division N in the <a class="wiki_link" href="/p-limit">p-limit</a>, this can be defined as the square root of the quantity<br /> <!-- ws:start:WikiTextMathRule:0: [[math]]<br/> \sum_{q prime \le p} (\frac{E(q){\ln q})^2<br/>[[math]] --><script type="math/tex">\sum_{q prime \le p} (\frac{E(q){\ln q})^2</script><!-- ws:end:WikiTextMathRule:0 --><br /> where E(q) is the error <br /> <a class="wiki_link" href="/math">math</a> \frac{b}{N} - \lb q <a class="wiki_link" href="/math">math</a> <br /> of the <a class="wiki_link" href="/patent%20val">patent val</a> tuning, meaning the nearest to q, of the prime q.</body></html>