Temperament mapping matrix: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>mbattaglia1 **Imported revision 355666984 - Original comment: ** |
Wikispaces>mbattaglia1 **Imported revision 355667144 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-07-31 07: | : This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-07-31 07:36:02 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>355667144</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Basics= | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Basics= | ||
The multiplicative group of p-limit rational numbers, which is an r-rank free abelian group, also naturally has the structure of being a Z-module. If one wants to admit the existence of monzos with | The multiplicative group of p-limit rational numbers, which is an r-rank free abelian group, also naturally has the structure of being a Z-module. If one wants to admit the existence of monzos with [[Fractional monzos|fractional or real coefficients]], then this module becomes a vector space. Temperaments, which | ||
can be embedded into an r-dimensional vector space or Z-module can be embedded into a vector space or | can be embedded into an r-dimensional vector space or Z-module can be embedded into a vector space or | ||
Line 14: | Line 14: | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Temperament Mapping Matrices (M-maps)</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Basics"></a><!-- ws:end:WikiTextHeadingRule:0 -->Basics</h1> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Temperament Mapping Matrices (M-maps)</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Basics"></a><!-- ws:end:WikiTextHeadingRule:0 -->Basics</h1> | ||
The multiplicative group of p-limit rational numbers, which is an r-rank free abelian group, also naturally has the structure of being a Z-module. If one wants to admit the existence of monzos with <br /> | The multiplicative group of p-limit rational numbers, which is an r-rank free abelian group, also naturally has the structure of being a Z-module. If one wants to admit the existence of monzos with <a class="wiki_link" href="/Fractional%20monzos">fractional or real coefficients</a>, then this module becomes a vector space. Temperaments, which<br /> | ||
<br /> | <br /> | ||
can be embedded into an r-dimensional vector space or Z-module can be embedded into a vector space or<br /> | can be embedded into an r-dimensional vector space or Z-module can be embedded into a vector space or<br /> | ||
<br /> | <br /> | ||
<a class="wiki_link" href="/Regular%20Temperaments">regular temperament</a> can be represented</body></html></pre></div> | <a class="wiki_link" href="/Regular%20Temperaments">regular temperament</a> can be represented</body></html></pre></div> |
Revision as of 07:36, 31 July 2012
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author mbattaglia1 and made on 2012-07-31 07:36:02 UTC.
- The original revision id was 355667144.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=Basics= The multiplicative group of p-limit rational numbers, which is an r-rank free abelian group, also naturally has the structure of being a Z-module. If one wants to admit the existence of monzos with [[Fractional monzos|fractional or real coefficients]], then this module becomes a vector space. Temperaments, which can be embedded into an r-dimensional vector space or Z-module can be embedded into a vector space or [[Regular Temperaments|regular temperament]] can be represented
Original HTML content:
<html><head><title>Temperament Mapping Matrices (M-maps)</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Basics"></a><!-- ws:end:WikiTextHeadingRule:0 -->Basics</h1> The multiplicative group of p-limit rational numbers, which is an r-rank free abelian group, also naturally has the structure of being a Z-module. If one wants to admit the existence of monzos with <a class="wiki_link" href="/Fractional%20monzos">fractional or real coefficients</a>, then this module becomes a vector space. Temperaments, which<br /> <br /> can be embedded into an r-dimensional vector space or Z-module can be embedded into a vector space or<br /> <br /> <a class="wiki_link" href="/Regular%20Temperaments">regular temperament</a> can be represented</body></html>