Temperament mapping matrix: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>mbattaglia1
**Imported revision 355666984 - Original comment: **
 
Wikispaces>mbattaglia1
**Imported revision 355667144 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-07-31 07:34:30 UTC</tt>.<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-07-31 07:36:02 UTC</tt>.<br>
: The original revision id was <tt>355666984</tt>.<br>
: The original revision id was <tt>355667144</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Basics=  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Basics=  
The multiplicative group of p-limit rational numbers, which is an r-rank free abelian group, also naturally has the structure of being a Z-module. If one wants to admit the existence of monzos with  
The multiplicative group of p-limit rational numbers, which is an r-rank free abelian group, also naturally has the structure of being a Z-module. If one wants to admit the existence of monzos with [[Fractional monzos|fractional or real coefficients]], then this module becomes a vector space. Temperaments, which


can be embedded into an r-dimensional vector space or Z-module can be embedded into a vector space or
can be embedded into an r-dimensional vector space or Z-module can be embedded into a vector space or
Line 14: Line 14:
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Temperament Mapping Matrices (M-maps)&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Basics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Basics&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Temperament Mapping Matrices (M-maps)&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Basics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Basics&lt;/h1&gt;
  The multiplicative group of p-limit rational numbers, which is an r-rank free abelian group, also naturally has the structure of being a Z-module. If one wants to admit the existence of monzos with &lt;br /&gt;
  The multiplicative group of p-limit rational numbers, which is an r-rank free abelian group, also naturally has the structure of being a Z-module. If one wants to admit the existence of monzos with &lt;a class="wiki_link" href="/Fractional%20monzos"&gt;fractional or real coefficients&lt;/a&gt;, then this module becomes a vector space. Temperaments, which&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
can be embedded into an r-dimensional vector space or Z-module can be embedded into a vector space or&lt;br /&gt;
can be embedded into an r-dimensional vector space or Z-module can be embedded into a vector space or&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Regular%20Temperaments"&gt;regular temperament&lt;/a&gt; can be represented&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;a class="wiki_link" href="/Regular%20Temperaments"&gt;regular temperament&lt;/a&gt; can be represented&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 07:36, 31 July 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author mbattaglia1 and made on 2012-07-31 07:36:02 UTC.
The original revision id was 355667144.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=Basics= 
The multiplicative group of p-limit rational numbers, which is an r-rank free abelian group, also naturally has the structure of being a Z-module. If one wants to admit the existence of monzos with [[Fractional monzos|fractional or real coefficients]], then this module becomes a vector space. Temperaments, which

can be embedded into an r-dimensional vector space or Z-module can be embedded into a vector space or

[[Regular Temperaments|regular temperament]] can be represented

Original HTML content:

<html><head><title>Temperament Mapping Matrices (M-maps)</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Basics"></a><!-- ws:end:WikiTextHeadingRule:0 -->Basics</h1>
 The multiplicative group of p-limit rational numbers, which is an r-rank free abelian group, also naturally has the structure of being a Z-module. If one wants to admit the existence of monzos with <a class="wiki_link" href="/Fractional%20monzos">fractional or real coefficients</a>, then this module becomes a vector space. Temperaments, which<br />
<br />
can be embedded into an r-dimensional vector space or Z-module can be embedded into a vector space or<br />
<br />
<a class="wiki_link" href="/Regular%20Temperaments">regular temperament</a> can be represented</body></html>