Semicomma family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 151165263 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 151169751 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-06-30 18:11:49 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-06-30 18:52:53 UTC</tt>.<br>
: The original revision id was <tt>151165263</tt>.<br>
: The original revision id was <tt>151169751</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 12: Line 12:


===Orwell===
===Orwell===
So called because 19/84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53-EDO]] and [[84edo]]. It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19/84 generator, is an excellent tuning for the 5, 7 and 11 limits, but [[53edo]] may be preferred in the 5-limit because of its nearly pure fifth. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.
So called because 19/84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53-EDO]] and [[84edo]], and may be described as the 22&amp;31 temperament, or . It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19/84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. [[53edo]] may be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.


The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Orwell very much comes into its own in the 11-limit, giving good accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.
The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.


Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.
Line 25: Line 25:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x-Seven limit children-Orwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Orwell&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x-Seven limit children-Orwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Orwell&lt;/h3&gt;
So called because 19/84 (as a &lt;a class="wiki_link" href="/fraction%20of%20the%20octave"&gt;fraction of the octave&lt;/a&gt;) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53-EDO&lt;/a&gt; and &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;. It's a good system in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; and naturally extends into the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;. &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, with the 19/84 generator, is an excellent tuning for the 5, 7 and 11 limits, but &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; may be preferred in the 5-limit because of its nearly pure fifth. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.&lt;br /&gt;
So called because 19/84 (as a &lt;a class="wiki_link" href="/fraction%20of%20the%20octave"&gt;fraction of the octave&lt;/a&gt;) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/53edo"&gt;53-EDO&lt;/a&gt; and &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, and may be described as the 22&amp;amp;31 temperament, or . It's a good system in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; and naturally extends into the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;. &lt;a class="wiki_link" href="/84edo"&gt;84edo&lt;/a&gt;, with the 19/84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. &lt;a class="wiki_link" href="/53edo"&gt;53edo&lt;/a&gt; may be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Orwell very much comes into its own in the 11-limit, giving good accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.&lt;br /&gt;
The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.&lt;/body&gt;&lt;/html&gt;</pre></div>
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 18:52, 30 June 2010

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2010-06-30 18:52:53 UTC.
The original revision id was 151169751.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The 5-limit parent comma for the semicomma family is the semicomma, 2109375/2097152 = |-21 3 7>. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. Orson, the [[5-limit]] temperament tempering it out, has a [[generator]] of 75/64. [[53edo]] is an excellent orson tuning, and [[84edo]] makes for a good alternative. These give tunings to the generator which are sharp of 7/6 by less than five [[cent]]s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.

==Seven limit children==
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Adding 64625/65536 leads to orwell, but we could also add 1029/1024, leading to the 31&159 temperament with wedgie <<21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&243 temperament with wedgie <<28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&243 temperament with wedgie <<7 -3 61 -21 77 150||.

===Orwell===
So called because 19/84 (as a [[fraction of the octave]]) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with [[22edo|22]], [[31edo|31]], [[53edo|53-EDO]] and [[84edo]], and may be described as the 22&31 temperament, or . It's a good system in the [[7-limit]] and naturally extends into the [[11-limit]]. [[84edo]], with the 19/84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. [[53edo]] may be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.

The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.

Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.

Original HTML content:

<html><head><title>Semicomma family</title></head><body>The 5-limit parent comma for the semicomma family is the semicomma, 2109375/2097152 = |-21 3 7&gt;. This is the amount by which three pure 3/1 twelfths exceed seven pure 8/5 minor thirds. Orson, the <a class="wiki_link" href="/5-limit">5-limit</a> temperament tempering it out, has a <a class="wiki_link" href="/generator">generator</a> of 75/64. <a class="wiki_link" href="/53edo">53edo</a> is an excellent orson tuning, and <a class="wiki_link" href="/84edo">84edo</a> makes for a good alternative. These give tunings to the generator which are sharp of 7/6 by less than five <a class="wiki_link" href="/cent">cent</a>s, making it hard to treat orson as anything other than an (at least) 7-limit system, leading to orwell.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h2>
The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which 7-limit family member we are looking at. Adding 64625/65536 leads to orwell, but we could also add 1029/1024, leading to the 31&amp;159 temperament with wedgie &lt;&lt;21 -9 -7 -63 -70 9||, or 67528125/67108864, giving the 31&amp;243 temperament with wedgie &lt;&lt;28 -12 1 -84 -77 36||, or 4375/4374, giving the 53&amp;243 temperament with wedgie &lt;&lt;7 -3 61 -21 77 150||.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h3&gt; --><h3 id="toc1"><a name="x-Seven limit children-Orwell"></a><!-- ws:end:WikiTextHeadingRule:2 -->Orwell</h3>
So called because 19/84 (as a <a class="wiki_link" href="/fraction%20of%20the%20octave">fraction of the octave</a>) is a possible generator of this temperament, orwell divides the interval of a twelfth (a tempered 3/1 frequency ratio) into 7 equal steps. It's compatible with <a class="wiki_link" href="/22edo">22</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/53edo">53-EDO</a> and <a class="wiki_link" href="/84edo">84edo</a>, and may be described as the 22&amp;31 temperament, or . It's a good system in the <a class="wiki_link" href="/7-limit">7-limit</a> and naturally extends into the <a class="wiki_link" href="/11-limit">11-limit</a>. <a class="wiki_link" href="/84edo">84edo</a>, with the 19/84 generator, provides a good tuning for the 5, 7 and 11 limits, but it does use its second-best 11. <a class="wiki_link" href="/53edo">53edo</a> may be preferred in the 5-limit because of its nearly pure fifth and in the 11-limit because of it slightly better 11, though most of its 11-limit harmony is actually worse. Aside from the semicomma and 65625/65536, 7-limit orwell tempers out 2430/2401, the nuwell comma, 1728/1715, the orwellisma, 225/224, the septimal kleisma, and 6144/6125, the porwell comma.<br />
<br />
The 11-limit version of orwell tempers out 99/98, which means that two of its sharpened 7/6 generators give a flattened 11/8, as well as 121/120, 176/175, 385/384 and 540/539. Despite lowered tuning accuracy, orwell comes into its own in the 11-limit, giving acceptable accuracy and relatively low complexity. Tempering out the orwellisma, 1728/1715, means that orwell interprets three stacked 7/6 generators as an 8/5, and the tempered 1-7/6-11/8-8/5 chord is natural to orwell.<br />
<br />
Orwell has MOS of size 9, 13, 22 and 31. The 9-note MOS is small enough to be retained in the mind as a genuine scale, is pleasing melodically, and has considerable harmonic resources despite its absence of 5-limit triads. The 13 note MOS has those, and of course the 22 and 31 note MOS are very well supplied with everything.</body></html>